首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10134篇
  免费   904篇
  国内免费   873篇
  2024年   17篇
  2023年   146篇
  2022年   313篇
  2021年   605篇
  2020年   422篇
  2019年   448篇
  2018年   437篇
  2017年   316篇
  2016年   455篇
  2015年   627篇
  2014年   811篇
  2013年   777篇
  2012年   967篇
  2011年   801篇
  2010年   554篇
  2009年   439篇
  2008年   479篇
  2007年   513篇
  2006年   417篇
  2005年   350篇
  2004年   308篇
  2003年   241篇
  2002年   213篇
  2001年   176篇
  2000年   156篇
  1999年   154篇
  1998年   73篇
  1997年   73篇
  1996年   75篇
  1995年   53篇
  1994年   67篇
  1993年   54篇
  1992年   75篇
  1991年   59篇
  1990年   39篇
  1989年   51篇
  1988年   29篇
  1987年   33篇
  1986年   24篇
  1985年   26篇
  1984年   8篇
  1983年   13篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   6篇
  1978年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
221.
Free radicals are implicated in many diseases including atherosclerosis, cancer and also in rheumatoid arthritis. Reaction of uric acid with free radicals, such as hydroxyl radical and hypochlorous acid (HOCl) results in allantoin production. In this study, we measured the serum allantoin levels, oxidation products of uric acid, as a marker of free radical generation in rheumatoid arthritis. Fasting blood samples were obtained from 21 rheumatoid patients and 15 healthy controls. In this study, the serum allantoin and uric acid levels were measured by a gas chromatography–mass spectrometry method and the ratios were calculated. The mean allantoin and uric acid levels and ratios in the patient group were 22.1±11.3, 280.5±65.0 and 8.0±3.7?μM, while in the control group they were 13.6±6.3, 278.3±53.6 and 4.9±2.1?μM, respectively. The effects of gender, age, menopausal status, duration of disease and medications on serum allantoin and uric acid levels of the patient and control groups were studied. Our results suggest that uric acid acts as a free radical scavenger and thus is converted to allantoin. Increased allantoin levels suggest the possible involvement of free radicals in rheumatoid arthritis.  相似文献   
222.
223.
The Epic® system, a high-throughput label-free optical biosensor system, is applied for the biochemical interrogation of phosphor-specific interactions of the 14-3-3 protein and its substrates. It has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. A perspective of biochemical applications for diagnostics and biomarker discovery, as well as cell-based applications for endogenous receptors and viral infection characterization, are also provided.  相似文献   
224.
225.
The DNA‐binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/β‐catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, β‐catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced β‐catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/β‐catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.  相似文献   
226.
Increasing evidence demonstrates that amyloid beta (Aβ) elicits mitochondrial dysfunction and oxidative stress, which contributes to the pathogenesis of Alzheimer's disease (AD). Identification of the molecules targeting Aβ is thus of particular significance in the treatment of AD. Hopeahainol A (HopA), a polyphenol with a novel skeleton obtained from Hopea hainanensis, is potentially acetylcholinesterase‐inhibitory and anti‐oxidative in H2O2‐treated PC12 cells. In this study, we reported that HopA might bind to Aβ1–42 directly and inhibit the Aβ1–42 aggregation using a combination of molecular dynamics simulation, binding assay, transmission electron microscopic analysis and staining technique. We also demonstrated that HopA decreased the interaction between Aβ1–42 and Aβ‐binding alcohol dehydrogenase, which in turn reduced mitochondrial dysfunction and oxidative stress in vivo and in vitro. In addition, HopA was able to rescue the long‐term potentiation induction by protecting synaptic function and attenuate memory deficits in APP/PS1 mice. Our data suggest that HopA might be a promising drug for therapeutic intervention in AD.  相似文献   
227.
Highlights? MIWI is a substrate of APC/C, and piRNA loading is essential for MIWI ubiquitination ? piRNA loading promotes MIWI binding to the APC/C substrate-binding subunit ? MIWI and piRNAs are coordinately eliminated in late spermatids ? Inhibition of MIWI destruction in late spermatids prevents sperm maturation  相似文献   
228.
Wheat-Dasypyrum villosum translocated chromosomes T6V#2S?6AL and T6V#4S?6DL are known to confer excellent resistance to wheat powdery mildew (PM). However, it is difficult to distinguish the two sources of PM resistance genes through multi-pathotype testing because to date no virulence for them has been found. To reveal the relationship between the PM resistance genes from the two translocations, the sequence of the Stpk-V gene, a key member of powdery mildew resistance locus Pm21, was used as a reference to isolate homologous genes from a D. villosum accession No.1026 and its derivatives 6V#4(6D) disomic substitution (DS) line RW15 and T6V#4S?6DL translocation line Pm97033. Two genes Stpk-V2 and Stpk-V3 were cloned from No.1026. Sequence alignment showed that Stpk-V2 and Stpk-V3 shared 98.2 % and 96.2 % of their DNA and 99.3 % and 100 % of their amino acids in identity with Stpk-V. Compared with Stpk-V, a 22-bp direct sequence repeat and a miniature inverted-repeat transposable element (MITE) were found in the intron 4 of Stpk-V2 and Stpk-V3, respectively. However, Stpk-V2 was not present in DS line RW15 and translocation line Pm97033 based on the PCR result, indicating that Stpk-V2 did not contribute to the PM resistance of RW15 and Pm97033. In the promoter region, a 78-bp insertion was found not only in Stpk-V2 and Stpk-V3, but also in its orthologous gene Stpk-A of wheat. In addition, there was a 17 bp/8 bp deletion/insertion in the putative promoter of Stpk-V3 in comparison with that of Stpk-V/Stpk-V2. Real-time quantitative RT-PCR analysis indicated that the expression levels of Stpk-V and Stpk-V3 genes in the translocation lines were induced by the pathogen, but Stpk-V had a higher expression level than Stpk-V3 at 12 h after inoculation with Bgt. The diversity of Stpk-V gene will help to explore new resistance genes to PM in D. villosum for wheat breeding.  相似文献   
229.
230.
Diabetes is a metabolic disorder characterized by hyperglycemia. Insulin, which is secreted by pancreatic beta cells, is recognized as the critical regulator of blood glucose, but the molecular machinery responsible for insulin trafficking remains poorly defined. In particular, the roles of cytosolic factors that govern the formation and maturation of insulin granules are unclear. Here we report that PICK1 and ICA69, two cytosolic lipid-binding proteins, formed heteromeric BAR-domain complexes that associated with insulin granules at different stages of their maturation. PICK1-ICA69 heteromeric complexes associated with immature secretory granules near the trans-Golgi network (TGN). A brief treatment of Brefeldin A, which blocks vesicle budding from the Golgi, increased the amount of PICK1 and ICA69 at TGN. On the other hand, mature secretory granules were associated with PICK1 only, not ICA69. PICK1 deficiency in mice caused the complete loss of ICA69 and led to increased food and water intake but lower body weight. Glucose tolerance tests demonstrated that these mutant mice had high blood glucose, a consequence of insufficient insulin. Importantly, while the total insulin level was reduced in PICK1-deficient beta cells, proinsulin was increased. Lastly, ICA69 knockout mice also displayed similar phenotype as the mice deficient in PICK1. Together, our results indicate that PICK1 and ICA69 are key regulators of the formation and maturation of insulin granules.

Author Summary

Insulin is a key regulator of blood glucose and insufficient insulin leads to diabetes. Insulin is synthesized as proinsulin, processed in endoplasmic reticulum and Golgi, and eventually packaged into insulin granules, a type of dense core vesicles. Despite its importance, the molecular mechanisms governing the biogenesis and maturation of insulin granules are not fully understood. In this study, we identified two cytosolic proteins, PICK1 and ICA69, as important regulators of insulin granule biogenesis and maturation. Both PICK1 and ICA69 have the banana-shaped BAR domain that can bend the lipid membrane and help the formation of dense core vesicles. We show that without PICK1 or ICA69, insulin granules cannot be properly formed and, as a result, proinsulin cannot be effectively processed into mature insulin. Mice lacking functional PICK1 or ICA69 genes have reduced insulin but increased proinsulin. Consequently, these mice have high levels of glucose, a prominent feature found in diabetes patients. These results add to previous findings that PICK1 is important for the generation of proacrosomal granules found in cells of the testis, and thereby support a wider role for PICK1 and ICA69 in regulating dense core vesicle biogenesis and maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号