首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21594篇
  免费   1644篇
  国内免费   1578篇
  24816篇
  2024年   56篇
  2023年   252篇
  2022年   669篇
  2021年   1181篇
  2020年   778篇
  2019年   941篇
  2018年   915篇
  2017年   681篇
  2016年   962篇
  2015年   1305篇
  2014年   1583篇
  2013年   1723篇
  2012年   1907篇
  2011年   1771篇
  2010年   1088篇
  2009年   996篇
  2008年   1141篇
  2007年   1012篇
  2006年   861篇
  2005年   746篇
  2004年   571篇
  2003年   550篇
  2002年   454篇
  2001年   323篇
  2000年   325篇
  1999年   325篇
  1998年   190篇
  1997年   174篇
  1996年   183篇
  1995年   176篇
  1994年   162篇
  1993年   119篇
  1992年   158篇
  1991年   113篇
  1990年   110篇
  1989年   77篇
  1988年   54篇
  1987年   46篇
  1986年   35篇
  1985年   36篇
  1984年   17篇
  1983年   16篇
  1982年   16篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1966年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
The crystal structure of a chimeric Fab' fragment of a monoclonal antibody is presented. The Fab' comprises the murine light chain and heavy chain variable domains of the carcinoma-binding antibody B72.3 fused to the constant domain of human kappa, and the first constant domain and hinge domain of human gamma 4, respectively. A model for the Fab' has been determined by molecular replacement and refined to a resolution of 3.1 A with an R-factor of 17.6%. The additional residues that distinguish a Fab' from a Fab fragment are seen to be disordered in the crystals. The H3 hypervariable loop is short and adopts a sharp hairpin turn in a conformation that results from an interaction between the lysine side-chain of H93 and the main-chain carbonyl group of H96. The remaining hypervariable loops display conformations similar to those predicted from the canonical structures approach, although loop H2 is apparently displaced by a salt-bridge formed between H55 Asp and the neighbouring H73 Lys. These and other features of the structure likely to be important in grafting the hypervariable loops to an otherwise human framework are discussed.  相似文献   
53.
Four fatty acids (FA, palmitic, myristic, decanoic, hexanoic) were individually conjugated to the N-terminus of the alpha-MSH fragment analog, H-Asp5-His6-D-Phe7-Arg8-Trp9-Lys10-NH2. This resulted in enhanced potency of the conjugates (compared to the unconjugated melanotropin analog) as determined in the lizard skin bioassay and in the mouse melanoma cell tyrosinase bioassay. The shorter conjugates of hexanoic and decanoic acid were at least equipotent to alpha-MSH in the lizard skin bioassay, whereas the longer myristoyl and palmitoyl analogs were 100 times less active. The myristoyl and palmitoyl conjugates exhibited a "creeping" potency in the lizard skin bioassay-that is, potency of the peptides increased with time in contact with the skins. These observations may be related to the more lipid nature of these FA-conjugates. In the tyrosinase assay, the conjugates were 10-100 times more active than alpha-MSH or the unconjugated analog. Each of the FA-melanotropic peptide conjugates exhibited prolonged (residual) melanotropic activity in both the lizard skin and melanoma cell bioassays. In other words, after removal of the melanotropin conjugates from contact with the skins or cells, responses were still manifested for hours or days thereafter. As little as 1 hr of contact with melanoma cells resulted in enhanced enzyme activity as measured 48 hr later. Since the conjugates, but not H-[Asp5, D-Phe7, Lys10]alpha-MSH5-10-NH2, exhibited prolonged activity, the conversion of reversible agonists to irreversible agonists was demonstrated.  相似文献   
54.
Chemotaxis is an important step in monocyte recruitment in inflammation, wound healing, and tumor growth. We reported previously that monocyte chemotactic activity secreted by malignant cells and normal smooth muscle cells is associated with a protein or family of proteins that are related to the monocyte-specific smooth muscle cell-derived chemotactic factor (SMC-CF) (Graves, D. T., Jiang, Y. L., Williamson, M. J., and Valente, A. J. (1989) Science 245, 1490-1493). Similar monocyte chemotactic proteins (MCP-1) produced by U-105MG human glioma cells have also been identified (Yoshimura, T., Robinson, E. A., Tanaka, S., Appella, E., Kuratsu, J., and Leonard, E. J. (1989) J. Exp. Med. 169, 1449-1459). We now report that the MCP-1 gene is expressed in MG-63 human osteosarcoma and vascular smooth muscle cells and that SMC-CF antiserum specifically immunoprecipitates proteins synthesized by U-105MG glioma cells. Experiments were undertaken to elucidate the processing pathway of MCP-1/SMC-CF-like proteins in each of these cell types. These experiments demonstrate that larger MCP-1/SMC-CF-like proteins are derived from a Mr = 9000 precursor. Post-translational modification involves the addition of O-linked carbohydrates and sialic acid residues. Differences in carbohydrate processing account for the heterogeneity in MCP-1/SMC-CF-like proteins produced by different cell types. Secretion of these proteins occurs rapidly following processing events in the endoplasmic reticulum-Golgi compartment.  相似文献   
55.
56.
57.
Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.  相似文献   
58.
59.
As a member of the deoxyribonuclease 1 family, DNASE1L3 plays a significant role both inside and outside the cell. However, the role of DNASE1L3 in hepatocellular carcinoma (HCC) and its molecular basis remains to be further investigated. In this study, we report that DNASE1L3 is downregulated in clinical HCC samples and evaluate the relationship between its expression and HCC clinical features. In vivo and in vitro experiments showed that DNASE1L3 negatively regulates the proliferation, invasion and metastasis of HCC cells. Mechanistic studies showed that DNASE1L3 recruits components of the cytoplasmic β‐catenin destruction complex (GSK‐3β and Axin), promotes the ubiquitination degradation of β‐catenin, and inhibits its nuclear transfer, thus, decreasing c‐Myc, P21 and P27 level. Ultimately, cell cycle and EMT signals are restrained. In general, this study provides new insight into the mechanism for HCC and suggests that DNASE1L3 can become a considerable target for HCC.

Decreased expression of DNASE1L3 is associated with poor prognosis in patients with HCC DNASE1L3 inhibits the proliferation and cell cycle of HCC cells in vitro and promotes the invasion and metastasis of HCC cells DNASE1L3 inhibits the tumorigenicity and metastasis of HCC cells in vivo DNASE1L3 interacts with β‐catenin and promotes its binding to the β‐catenin destroying complex DNASE1L3 interacts with P21 and stabilizes P21 by mediating the deubiquitin activity  相似文献   
60.
Osteoarthritis (OA) is a common joint disease featured by the deterioration of articular cartilage and chondrocyte death. Emerging evidence has indicated that circular RNAs (circRNAs) play an essential role in OA progress. Here, we found that the expression of circHIPK3 was significantly decreased in human and mouse OA cartilage. Knocking down circHIPK3 increased apoptosis and intracellular ROS level in HC‐a chondrocytes. We performed proteomic studies and identified that circHIPK3 regulated chondrocyte apoptosis through the mitochondrial pathway. Results of JC‐1 staining and western blot further confirmed that mitochondrial outer membrane permeabilization was promoted in HC‐a chondrocytes transfected by circHIPK3 siRNA. In terms of mechanism, we showed that PON2 functioned as a potential target of circHIPK3 to regulate chondrocyte apoptosis. Moreover, we revealed that circHIPK3 interacted with miR‐30a‐3p to regulate PON2 expression in chondrocytes. Taken together, our findings suggested that circHIPK3 regulated chondrocyte apoptosis by mitochondrial pathway, and targeting the circHIPK3/miR‐30a‐3p/PON2 axis might be a potential strategy for OA treatment.

The current study revealed the important role of circHIPK3 in regulating chondrocyte apoptosis and maintaining extracellular matrix (ECM) homeostasis. Mechanistically, circHIIPK3 might serve as a sponge of miR‐30a‐3p to regulate PON2 expression. The downregulation of circHIIPK3 resulted in the increased expression of miR‐30a‐3p and decreased expression of PON2, thus leading to mitochondrial pathway apoptosis and ECM destruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号