首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   15篇
  220篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   6篇
  2014年   9篇
  2013年   18篇
  2012年   16篇
  2011年   10篇
  2010年   11篇
  2009年   5篇
  2008年   10篇
  2007年   12篇
  2006年   19篇
  2005年   7篇
  2004年   7篇
  2003年   8篇
  2002年   12篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
91.
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U snRNAs (U2, U4, and U5), as well as the minor splicing pathway U11 snRNA, contains a domain to which the SMN complex binds directly and with remarkable affinity (low nanomolar concentration). The SMN-binding domains of the U snRNAs do not have any significant nucleotide sequence similarity yet they compete for binding to the SMN complex in a manner that suggests the presence of at least two binding sites. Furthermore, the SMN complex-binding domain and the Sm site are both necessary and sufficient for Sm core assembly and their relative positions are critical for snRNP assembly. These findings indicate that the SMN complex stringently scrutinizes RNAs for specific structural features that are not obvious from the sequence of the RNAs but are required for their identification as bona fide snRNAs. It is likely that this surveillance capacity of the SMN complex ensures assembly of Sm cores on the correct RNAs only and prevents illicit, potentially deleterious, assembly of Sm cores on random RNAs.  相似文献   
92.
93.
94.
IntroductionThe present study was aimed to assess the in vivo hamster pial microvessel alterations due to 30 min transient bilateral common carotid artery occlusion (BCCAO) and reperfusion (60 min); moreover, the neuroprotective effects of Vaccinium myrtillus extract, containing 34.7% of anthocyanins, were investigated.ResultsIn age-matched control diet-fed hamsters, BCCAO caused a decrease in diameter of all arterioles. At the end of reperfusion, the reduction of diameter in order 3 arterioles was by 8.4 ± 3.1%, 10.8 ± 2.3% and 12.1 ± 1.1% of baseline in the 2, 4 and 6 month control diet-fed hamsters, respectively. Microvascular permeability and leukocyte adhesion were markedly enhanced, while perfused capillary length (PCL) decreased. The response to acetylcholine and papaverine topical application was impaired; 2’-7’-dichlorofluoresceine-diacetate assay demonstrated a significant ROS production. At the end of BCCAO, in age-matched Vaccinium myrtillussupplemented diet-fed hamsters, the arteriolar diameter did not significantly change compared to baseline. After 60 min reperfusion, order 3 arterioles dilated by 9.3 ± 2.4%, 10.6 ± 3.1% and 11.8 ± 2.7% of baseline in the 2, 4 and 6 month Vaccinium myrtillus supplemented diet-fed hamsters, respectively. Microvascular leakage and leukocyte adhesion were significantly reduced in all groups according to the time-dependent treatment, when compared with the age-matched control diet-fed hamsters. Similarly, the reduction in PCL was progressively prevented. Finally, the response to acetylcholine and papaverine topical application was preserved and there was no significant increase in ROS production in all groups.ConclusionsIn conclusion, Vaccinium myrtillusextract protected pial microcirculation during hypoperfusion-reperfusion, preventing vasoconstriction, microvascular permeability, leukocyte adhesion, reduction in PCL and preserving the endothelium function.  相似文献   
95.
The present study investigates the effects on immune-related parameters of various stress factors (air exposure, mechanical stress, high temperature and extreme salinity conditions) faced by the bivalve mollusc Mytilus galloprovincialis during marketing procedures. We observed that some stress typologies increase phagocytosis and the number of circulating immunocytes, while others can modify immunocyte response towards a further perturbation, i.e. the marine algal toxin yessotoxin. Our results suggest that non-lethal stress can be counteracted for sometime by increasing the level of some defence parameters. Moreover, our data indicate that fishing and transport procedures could interfere with mussel immunosurveillance.  相似文献   
96.
Obese adolescents are at risk of developing NAFLD and type 2 diabetes. We measured noninvasively the IHF content of obese adolescents to ascertain whether it is associated with insulin resistance and abnormal energy homeostasis. IHF content, whole body energy homeostasis, insulin sensitivity, and body composition were measured using localized hepatic (1)H-MRS, indirect calorimetry, fasting-derived and 3-h-OGTT-derived surrogate indexes (HOMA2 and WBISI), and DEXA, respectively, in 54 obese adolescents (24 female and 30 male, age 13 +/- 2 yr, BMI >99th percentile for their age and sex). NAFLD (defined as IHF content >5% wet weight) was found in 16 individuals (30%) in association with higher ALT (P < 0.006), Hb A(1c) (P = 0.021), trunk fat content (P < 0.03), and lower HDL cholesterol (P < 0.05). Individuals with NAFLD had higher fasting plasma glucose (89 +/- 8 vs. 83 +/- 9 mg/dl, P = 0.01) and impaired insulin sensitivity (HOMA2 and WBISI, P < 0.05). Meanwhile, parameters of insulin secretion were unaffected. Their reliance on fat oxidation in the fasting state was lower (RQ 0.83 +/- 0.08 vs. 0.77 +/- 0.05, P < 0.01), and their ability to suppress it during the oral glucose challenge was impaired (P < 0.05) vs. those with normal IHF content. When controlling for trunk fat content, the correlation between IHF content and insulin sensitivity was weakened, whereas the correlation with fasting lipid oxidation was maintained. In conclusion, NAFLD is common in childhood obesity, and insulin resistance is present in association with increased trunk fat content. In contrast, the rearrangement of whole body substrate oxidation in these youngsters appeared to be an independent feature.  相似文献   
97.
The evaluation of peptide structures in solution is made feasible by the combined use of two-dimensional NMR in the laboratory (NOESY) and rotating frames (ROESY), and by the use of molecular dynamics calculations. The present paper describes how both the NMR method and molecular dynamics calculations were applied to very rigid synthetic bicyclic peptides that are analogues of natural amatoxins. The NMR theory, which allows the estimate of interatomic distances between interacting nuclei, is briefly discussed. The experimental data were compared with those of known solid-state structures. Three amatoxin analogues have been examined. Of these, one is biologically active (S-deoxo γ[R] OH-Ile3-amaninamide) and its structure in the solid state has recently been worked out. The second and third analogues (S-deoxo-Ile3 -Ala5-amaninamide and S-deoxo-D -Ile3 -amaninamide, respectively) are inactive and their solid-state structures are unknown. The data presented confirm the authors' previous hypothesis that lack of biological activity of S-deoxo-Ile3-Ala5- amaninamide is due to the masking of the tryptophan ring by the methyl group of L -Ala and not to massive conformational changes of the analogue.  相似文献   
98.
99.
Osteoclast interaction with extracellular matrix drives the sequential events that end with bone resorption. However, the role of matrix proteins is not yet fully understood. We studied this problem on human osteoclast-like cells derived from giant cell tumors of bone (GCT cells). On GCT cells we considered cytoskeletal organization, adhesion properties, and integrin expression upon plating in serum-free medium onto fibronectin (FN), collagen (COL), thrombospondin (TSP), bone sialoprotein (BSPII), and osteopontin (OPN). GCT cells promptly adhered and spread on FN, BSPII, and OPN, while only 50% adhered on COL and none on TSP. The integrin β1 chain was always associated to focal adhesions, while the αvβ3 heterodimer was detected in focal contacts only upon plating on BSPII, OPN, and FN. The focal clustering of β1 was impaired by monensin treatment, indicating that endogenous FN secretion was required to drive β1 into focal contacts. Conversely, αvβ3 clustering was also not affected by monensin when cells were plated onto plasma FN. Immunoprecipitation of metabolically labeled GCT cell lysates showed that three different heterodimers (αvβ3, α3β1, and α5β1) were assembled. Adhesion to FN was completely inhibited by β1 antibodies at dilutions up to 1:400, while β3 antibodies, at similar dilutions, impaired spreading but not adhesion. We conclude that αvβ33 is the main integrin used by GCT cells in bone recognition. We also suggest that selected substrata may induce the release and the organization of endogenous FN that eventually drives the recruitment of a β1 integrin receptor into focal contacts.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号