首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   10篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   18篇
  2012年   15篇
  2011年   9篇
  2010年   11篇
  2009年   3篇
  2008年   10篇
  2007年   12篇
  2006年   16篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   11篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
61.
62.
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.  相似文献   
63.
The complexes Al(acac)3 (1) (acac = 2,4-pentanedionate) and Al(malt)3 (malt = 3-hydroxy-2-methyl-4-pyronate) (2) react with dl--dipalmitoylphosphatidylcholine (DPPC) under a 1:1 molar ratio in CDCl3 at 37 °C, as shown by the substantial release of ligands (20–50%) from the metal coordination sphere (1H-NMR), by evident changes in the 1H-NMR spectrum of DPPC in the reaction mixture and by the appearance of a 31P-NMR signal due to metal-coordinated DPPC. 31P-NMR spectra reveal that both 1 and 2 also react with DPPC in water, in the presence of 1% Triton X-100 and Tris buffer. Under these conditions, 1 and 2 do not react with ghosts from human erythrocytes. On the contrary, the far less hydrolytically stable complex Al(lact)3 (lact = lactate) appears to be reactive under identical conditions, as shown by 31P-NMR spectra.  相似文献   
64.
Aspirin and indomethacin do interact with the same site on cyclo-oxygenase. This suggestion is based on studies on ram seminal vesicles and drug interaction studies on rat platelets. The purpose of the present study was to ascertain whether the same interaction also occurred after administration of both drugs to human volunteers.Platelet aggregation induced by sodium arachidonate or by collagen, and formation of platelet MDA and TxB2 were measured before, two and 48 hours after ingestion of either indomethacin (50 mg) or aspirin (500 mg) or of both drugs (30 minutes apart).While the inhibitory effect of indomethacin on these parameters was short lasting, that of aspirin persisted for at least 48 hours. However, when both drugs were given concurrently, the long-lasting effect of aspirin was no longer detectable. Since competition at levels other than platelets was unlikely, this study indicates that indomethacin and aspirin inhibit human platelet cyclo-oxygenase by the same basic mechanism. Acetylation of the enzyme appears to be a secondary mechanism which makes the inhibitory effect of aspirin persistent.  相似文献   
65.
Microsatellite instability (MSI) in tumors is diagnostic for inactive DNA mismatch repair. It is widespread among some tumor types, such as colorectal or endometrial carcinoma, but is rarely found in leukemia. Therapy-related acute myeloid leukemia/myelodysplastic syndrome (tAML/MDS) is an exception, and MSI is frequent in tAML/MDS following cancer chemotherapy or organ transplantation. The development of MSI+ tumors is associated with an accumulation of insertion/deletion mutations in repetitive sequences. These events can cause inactivating frameshifts or loss of expression of key growth control proteins. We examined established MSI+ cell lines and tAML/MDS cases for frameshift-like mutations of repetitive sequences in several genes that have known, or suspected, relevance to leukemia. CASPASE-5, an acknowledged frameshift target in MSI+ gastrointestinal tract tumors, was frequently mutated in MSI+ cell lines (67%) and in tAML/MDS (29%). Frameshift-like mutations were also observed in the NF1 and FANCD2 genes that are associated with genetic conditions conferring a predisposition to leukemia. Both genes were frequent targets for mutation in MSI+ cell lines and colorectal carcinomas. FANCD2 mutations were also common in MSI+ tAML/MDS, although NF1 mutations were not observed. A novel FANCD2 polymorphism was also identified.  相似文献   
66.
Extrahepatic glucose release was evaluated during the anhepatic phase of liver transplantation in 14 recipients for localized hepatocarcinoma with mild or absent cirrhosis, who received a bolus of [6,6-2H2]glucose and l-[3-13C]alanine or l-[1,2-13C2]glutamine to measure glucose kinetics and to prove whether gluconeogenesis occurred from alanine and glutamine. Twelve were studied again 7 mo thereafter along with seven healthy subjects. At the beginning of the anhepatic phase, plasma glucose was increased and then declined by 15%/h. The right kidney released glucose, with an arteriovenous gradient of -3.7 mg/dl. Arterial and portal glucose concentrations were similar. The glucose clearance was 25% reduced, but glucose uptake was similar to that of the control groups. Glucose production was 9.5 +/- 0.9 micromol.kg-1. min-1, 30% less than in controls. Glucose became enriched with 13C from alanine and especially glutamine, proving the extrahepatic gluconeogenesis. The gluconeogenic precursors alanine, glutamine, lactate, pyruvate, and glycerol, insulin, and the counterregulatory hormones epinephrine, cortisol, growth hormone, and glucagon were increased severalfold. Extrahepatic organs synthesize glucose at a rate similar to that of postabsorptive healthy subjects when hepatic production is absent, and gluconeogenic precursors and counterregulatory hormones are markedly increased. The kidney is the main, but possibly not the unique, source of extrahepatic glucose production.  相似文献   
67.
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U snRNAs (U2, U4, and U5), as well as the minor splicing pathway U11 snRNA, contains a domain to which the SMN complex binds directly and with remarkable affinity (low nanomolar concentration). The SMN-binding domains of the U snRNAs do not have any significant nucleotide sequence similarity yet they compete for binding to the SMN complex in a manner that suggests the presence of at least two binding sites. Furthermore, the SMN complex-binding domain and the Sm site are both necessary and sufficient for Sm core assembly and their relative positions are critical for snRNP assembly. These findings indicate that the SMN complex stringently scrutinizes RNAs for specific structural features that are not obvious from the sequence of the RNAs but are required for their identification as bona fide snRNAs. It is likely that this surveillance capacity of the SMN complex ensures assembly of Sm cores on the correct RNAs only and prevents illicit, potentially deleterious, assembly of Sm cores on random RNAs.  相似文献   
68.
69.
70.
In the present study, we report the benefits of a passive and fully articulated exoskeleton on multiple sclerosis patients by means of behavioral and electrophysiological measures, paying particular attention to the prefrontal cortex activity. Multiple sclerosis is a neurological condition characterized by lesions of the myelin sheaths that encapsulate the neurons of the brain, spine and optic nerve, and it causes transient or progressive symptoms and impairments in gait and posture. Up to 50% of multiple sclerosis patients require walking aids and 10% are wheelchair-bound 15 years following the initial diagnosis. We tested the ability of a new orthosis, the “Human Body Posturizer”, designed to improve the structural and functional symmetry of the body through proprioception, in multiple sclerosis patients. We observed that a single Human Body Posturizer application improved mobility, ambulation and response accuracy, in all of the tested patients. Most importantly, we associated these clinical observations and behavioral effects to changes in brain activity, particularly in the prefrontal cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号