全文获取类型
收费全文 | 196篇 |
免费 | 11篇 |
专业分类
207篇 |
出版年
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 5篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 6篇 |
2015年 | 6篇 |
2014年 | 9篇 |
2013年 | 18篇 |
2012年 | 15篇 |
2011年 | 10篇 |
2010年 | 11篇 |
2009年 | 3篇 |
2008年 | 10篇 |
2007年 | 12篇 |
2006年 | 16篇 |
2005年 | 7篇 |
2004年 | 6篇 |
2003年 | 8篇 |
2002年 | 11篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有207条查询结果,搜索用时 15 毫秒
21.
Luisa Calvanese Daniela Marasco Nunzianna Doti Angela Saporito Gabriella D'Auria Livio Paolillo Menotti Ruvo Lucia Falcigno 《Biopolymers》2010,93(11):1011-1021
Nodal, a member of the transforming growth factor‐β superfamily, is a potent embryonic morphogen also implicated in tumor progression. Up to date structural information on the interaction of Nodal with its molecular partners are unknown. To deepen our understanding about mechanisms underlying both embryonic development and Nodal/Cripto‐dependent tumor progression, we present here a molecular model of activin receptor‐like kinase 4/Cripto/Nodal complex built by homology modeling as well as docking tests aimed at identifying potential binding epitopes. Starting from this model, we have predicted a large interaction surface on Nodal, which encompasses residues 43–69 and includes the prehelix loop and the H3 helix. This hypothesis has been subsequently assessed by surface plasmon resonance binding assays between the full‐length Cripto and synthetic peptides reproducing the selected Nodal regions. In addition, the binding affinity between the full‐length Nodal and Cripto proteins has been evaluated for the first time. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1011–1021, 2010. 相似文献
22.
The seed coat morphology, investigated in taxa representative of the main European groups ofAconitum, are in good agreement with the current taxonomy of the genus. The seed coat microcharacteristics (warty epidermal cells) are very constant. There is a trend for the reduction of longitudinal wings on the edges concomitant with the development of ridges and transverse wings on the faces. Another morphological progression leads from smooth to rugulose and eventually to transverse wing-bearing seed faces. A working hypothesis suggests an ecological adaptative significance to these changes. 相似文献
23.
The Cannabinoid Receptor Type 2 as Mediator of Mesenchymal Stromal Cell Immunosuppressive Properties
Francesca Rossi Maria Ester Bernardo Giulia Bellini Livio Luongo Antonella Conforti Iolanda Manzo Francesca Guida Luigia Cristino Roberta Imperatore Stefania Petrosino Bruno Nobili Vincenzo Di Marzo Franco Locatelli Sabatino Maione 《PloS one》2013,8(11)
Mesenchymal stromal cells are non-hematopoietic, multipotent progenitor cells producing cytokines, chemokines, and extracellular matrix proteins that support hematopoietic stem cell survival and engraftment, influence immune effector cell development, maturation, and function, and inhibit alloreactive T-cell responses. The immunosuppressive properties of human mesenchymal stromal cells have attracted much attention from immunologists, stem cell biologists and clinicians.Recently, the presence of the endocannabinoid system in hematopoietic and neural stem cells has been demonstrated. Endocannabinoids, mainly acting through the cannabinoid receptor subtype 2, are able to modulate cytokine release and to act as immunosuppressant when added to activated T lymphocytes.In the present study, we have investigated, through a multidisciplinary approach, the involvement of the endocannabinoids in migration, viability and cytokine release of human mesenchymal stromal cells.We show, for the first time, that cultures of human mesenchymal stromal cells express all of the components of the endocannabinoid system, suggesting a potential role for the cannabinoid CB2 receptor as a mediator of anti-inflammatory properties of human mesenchymal stromal cells, as well as of their survival pathways and their capability to home and migrate towards endocannabinoid sources. 相似文献
24.
An enzyme electrode was constructed for amperometric determination of xylose and glucose. The electrode is based on the PQQ-dependent membrane-bound aldose dehydrogenase (ALDH) from Gluconobacter oxydans. ALDH was covalently immobilized on a graphite electrode. Immobilized dimethylferrocene, soluble ferrocene carboxylic acid and phenazine methosulphate were used as electron transfer mediators. When xylose was measured electrochemically using an electrode modified with ALDH and dimethylferrocene, the linear measurement range extended to 100 mM. For glucose measurement the linear measurement range was about one-tenth of that for xylose. The electrode showed fairly good stability; 50% of the original electrode response was still obtained after 5 days of intermittent use. The effect of possible leakage of adsorbed mediator was determined by measuring the response of an electrode with soluble mediator as a function of time. The reproducibility of the electrode was good, the standard deviation of the electrode response in ten measurements with the same electrode being only 2.7%. 相似文献
25.
Perseghin G Lattuada G Danna M Sereni LP Maffi P De Cobelli F Battezzati A Secchi A Del Maschio A Luzi L 《American journal of physiology. Endocrinology and metabolism》2003,285(6):E1174-E1181
Insulin resistance is a key pathogenic factor of type 2 diabetes (T2DM); in contrast, in type 1 diabetes (T1DM) it is considered a secondary alteration. Increased intramyocellular lipid (IMCL) content accumulation and reduced plasma adiponectin were suggested to be pathogenic events of insulin resistance in T2DM. This study was designed to assess whether IMCL content and plasma adiponectin were also associated with the severity of insulin resistance in T1DM. We studied 18 patients with T1DM, 7 older and overweight/obese patients with T2DM, and 15 nondiabetic, insulin-resistant offspring of T2DM parents (OFF) and 15 healthy individuals (NOR) as appropriate control groups matched for anthropometric features with T1DM patients by means of the euglycemic hyperinsulinemic clamp combined with the infusion of [6,6-2H2]glucose and 1H magnetic resonance spectroscopy of the calf muscles. T1DM and T2DM patients showed reduced insulin-stimulated glucose metabolic clearance rate (MCR: 5.1 +/- 0.6 and 3.2 +/- 0.8 ml x kg(-1) min(-1)) similar to OFF (5.3 +/- 0.4 ml x kg(-1) x min(-1)) compared with NOR (8.5 +/- 0.5 ml x kg(-1) min(-1), P < 0.001). Soleus IMCL content was increased in T1DM (112 +/- 15 AU), T2DM (108 +/- 10 AU) and OFF (82 +/- 13 AU) compared with NOR (52 +/- 7 AU, P < 0.05) and the result was inversely proportional to the MCR (R2 = 0.27, P < 0.001); an association between IMCL content and Hb A1c was found only in T1DM (R2 = 0.57, P < 0.001). Fasting plasma adiponectin was reduced in T2DM (7 +/- 1 microg/ml, P = 0.01) and OFF (11 +/- 1 microg/ml, P = 0.03) but not in T1DM (25 +/- 6 microg/ml), whose plasma level was increased with respect to both OFF (P = 0.03) and NOR (16 +/- 2 microg/ml, P = 0.05). In conclusion, in T1DM, T2DM, and OFF, IMCL content was associated with insulin resistance, demonstrating that IMCL accretion is a marker of insulin resistance common to both primary genetically determined and secondary metabolic (chronic hyperglycemia) alterations. The increased adiponectin levels in insulin-resistant patients with T1DM, in contrast to the reduced levels found in patients with T2DM and in OFF, demonstrated that the relationship of adiponectin to insulin resistance in humans is still unclear. 相似文献
26.
Angela Lombardi Michele Saviano Flavia Nastri Ornella Maglio Marco Mazzeo Carla Isernia Livio Paolillo Vincenzo Pavone 《Biopolymers》1996,38(6):693-703
In the present paper we describe the solution nmr structural analysis and restrained molecular dynamic simulation of the cyclic pentapeptide cyclo-(Pro-Phe-Phe-β-Ala-β-Ala). The conformational analysis carried out in CD3CN and dimethylsulfoxide (DMSO) solutions by nmr spectroscopy was based on interproton distances derived from rotating frame nuclear Overhauser effect spectroscopy spectra and homonuclear coupling constants. A restrained molecular dynamic simulation in vacuo was also performed to build refined molecular models. The molecule is present in both solvent systems as two slowly interconverting conformers, characterized by a cis-trans isomerism around the β-Ala5-Pro1 peptide bond. In CD3CN solution, the conformer with a cis peptide bond is quite similar to that observed in the solid state, while the conformer containing all trans peptide bonds is characterized by an intramolecular hydrogen bond stabilizing a C10- and a C13-ring structure. In DMSO solution, the trans isomer is partly similar to that observed in CD3CN solution while the cis isomer is different from that observed in the solid state. The effect of the solvent in stabilizing different conformations was also investigated in DMSO-CD3CN solvent mixtures. © 1996 John Wiley & Sons, Inc. 相似文献
27.
Loading of the MCM replicative helicase at origins of replication is a highly regulated process that precedes DNA replication in all eukaryotes. The stoichiometry of MCM loaded at origins has been proposed to be a key determinant of when those origins initiate replication during S phase. Nevertheless, the genome-wide regulation of MCM loading stoichiometry and its direct effect on replication timing remain unclear. In order to investigate why some origins load more MCM than others, we perturbed MCM levels in budding yeast cells and, for the first time, directly measured MCM levels and replication timing in the same experiment. Reduction of MCM levels through degradation of Mcm4, one of the six obligate components of the MCM complex, slowed progression through S phase and increased sensitivity to replication stress. Reduction of MCM levels also led to differential loading at origins during G1, revealing origins that are sensitive to reductions in MCM and others that are not. Sensitive origins loaded less MCM under normal conditions and correlated with a weak ability to recruit the origin recognition complex (ORC). Moreover, reduction of MCM loading at specific origins of replication led to a delay in their replication during S phase. In contrast, overexpression of MCM had no effects on cell cycle progression, relative MCM levels at origins, or replication timing, suggesting that, under optimal growth conditions, cellular MCM levels are not limiting for MCM loading. Our results support a model in which the loading capacity of origins is the primary determinant of MCM stoichiometry in wild-type cells, but that stoichiometry is controlled by origins’ ability to recruit ORC and compete for MCM when MCM becomes limiting. 相似文献
28.
Minervini F Di Cagno R Lattanzi A De Angelis M Antonielli L Cardinali G Cappelle S Gobbetti M 《Applied and environmental microbiology》2012,78(4):1251-1264
The study of the microbiotas of 19 Italian sourdoughs used for the manufacture of traditional/typical breads allowed the identification, through a culture-dependent approach, of 20 and 4 species of lactic acid bacteria (LAB) and yeasts, respectively. Numerically, the most frequent LAB isolates were Lactobacillus sanfranciscensis (ca. 28% of the total LAB isolates), Lactobacillus plantarum (ca. 16%), and Lactobacillus paralimentarius (ca. 14%). Saccharomyces cerevisiae was identified in 16 sourdoughs. Candida humilis, Kazachstania barnettii, and Kazachstania exigua were also identified. As shown by principal component analysis (PCA), a correlation was found between the ingredients, especially the type of flour, the microbial community, and the biochemical features of sourdoughs. Triticum durum flours were characterized by the high level of maltose, glucose, fructose, and free amino acids (FAA) correlated with the sole or main presence of obligately heterofermentative LAB, the lowest number of facultatively heterofermentative strains, and the low cell density of yeasts in the mature sourdoughs. This study highlighted, through a comprehensive and comparative approach, the dominant microbiotas of 19 Italian sourdoughs, which determined some of the peculiarities of the resulting traditional/typical Italian breads. 相似文献
29.
The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. 相似文献
30.
Del Bo R Scarlato M Ghezzi S Maestroni A Sjölind L Forsblom C Wessman M Groop PH Comi GP Bresolin N Luzi L Zerbini G 《Immunogenetics》2006,58(2-3):107-112
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine originally described as an angiogenic factor. A number of reports have recently demonstrated that VEGF increases pancreatic islet survival after islet transplantation by stimulating angiogenesis and improving islet revascularization. Whether VEGF can protect from the autoimmune destruction of insulin-producing beta-cells that characterizes the development of type 1 diabetes is presently unknown. To clarify this issue, we studied the association of three polymorphisms of the promoter region of VEGF with type 1 diabetes in the Italian and the Finnish populations. The polymorphisms considered [C(-2578)A, G(-1190)A, and G(-1154)A] are known to modulate in vitro and in vivo VEGF expression. We found that VEGF promoter genotypes are associated with type 1 diabetes in both populations, but with different combinations. In Italian individuals, the -2578AA and -1190AA genotypes are associated with type 1 diabetes and accelerate its onset, while in Finnish individuals, -1154GG and -1190GG protect from type 1 diabetes and delay its onset. In conclusion, because the expected functional consequence of both genotype combinations is a reduced VEGF expression in diabetic patients, we propose a protective role of VEGF in the development of type 1 diabetes. 相似文献