首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   86篇
  国内免费   32篇
  2022年   8篇
  2021年   7篇
  2020年   9篇
  2019年   6篇
  2017年   9篇
  2016年   7篇
  2015年   17篇
  2014年   11篇
  2013年   9篇
  2012年   19篇
  2011年   29篇
  2010年   15篇
  2009年   12篇
  2008年   23篇
  2007年   24篇
  2006年   22篇
  2005年   21篇
  2004年   16篇
  2003年   17篇
  2002年   24篇
  2001年   18篇
  2000年   17篇
  1999年   25篇
  1998年   16篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   15篇
  1992年   11篇
  1991年   14篇
  1990年   9篇
  1989年   10篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   10篇
  1984年   7篇
  1983年   8篇
  1982年   11篇
  1981年   7篇
  1980年   5篇
  1978年   10篇
  1977年   11篇
  1976年   8篇
  1975年   12篇
  1974年   9篇
  1969年   8篇
  1968年   5篇
  1937年   4篇
排序方式: 共有677条查询结果,搜索用时 28 毫秒
91.
Sialyl Lewisa (sLea), also termed CA19-9 antigen, is recognized by murine mAb19-9 and is expressed on the cancer cell surface as a glycolipid and as an O-linked glycoprotein. It is highly expressed in a variety of gastrointestinal epithelial malignancies including colon cancer and pancreatic cancer, and in breast cancer and small cell lung cancer, but has a limited expression on normal tissues. sLea is known to be the ligand for endothelial cell selectins suggesting a role for sLea in cancer metastases and adhesion. For these reasons, sLea may be a good target for antibody mediated immunotherapy including monoclonal antibodies and tumor vaccines. However, sLea is structurally similar to sLex and other blood group related carbohydrates which are widely expressed on polymorphonucleocytes and other circulating cells, raising concern that immunization against sLea will induce antibodies reactive with these more widely expressed autoantigens. We have shown previously both in mice and in patients that conjugation of a variety of carbohydrate cancer antigen to keyhole limpet hemocyanin (KLH) and administration of this conjugate mixed with saponin adjuvants QS-21 or GPI-0100 are the most effective methods for induction of antibodies against these cancer antigens. We describe here for the first time the total synthesis of pentenyl glycoside of sLea hexasaccharide and its conjugation to KLH to construct a sLea-KLH conjugate. Groups of five mice were vaccinated subcutaneously four times over 6 weeks. Sera were tested against sLea-HSA by ELISA and against sLea positive human cell lines adenocarcinoma SW626 and small cell lung cancer (SCLC) DMS79 by FACS. As expected, mice immunized with unconjugated sLea plus GPI-0100 or unconjugated sLea mixed with KLH plus GPI-0100 failed to produce antibodies against sLea. However, mice immunized with sLea-KLH conjugate without GPI-0100 produced low levels of antibodies and mice immunized with sLea-KLH plus GPI-0100 produced significantly higher titer IgG and IgM antibodies against sLea by ELISA. These antibodies were highly reactive by FACS and mediated potent complement mediated cytotoxicity against sLea positive SW626 and DMS79 cells. They showed no detectable cross reactivity against a series of other blood group-related antigens, including Ley, Lex, and sLex by dot blot immune staining. This vaccine is ready for testing as an active immunotherapy for treating sLea positive cancer in clinical settings. Govind Ragupathi and Philip O. Livingston are paid consultants and shareholders in MabVax Therapeutics, Inc., San Diego, CA 92121. The sLea vaccine is licensed to MabVax.  相似文献   
92.
During lagging-strand DNA replication in eukaryotic cells primers are removed from Okazaki fragments by the flap endonuclease and DNA ligase I joins nascent fragments. Both enzymes are brought to the replication fork by the sliding clamp proliferating cell nuclear antigen (PCNA). To understand the relationship among these three components, we have carried out a synthetic lethal screen with cdc9-p, a DNA ligase mutation with two substitutions (F43A/F44A) in its PCNA interaction domain. We recovered the flap endonuclease mutation rad27-K325* with a stop codon at residue 325. We created two additional rad27 alleles, rad27-A358* with a stop codon at residue 358 and rad27-pX8 with substitutions of all eight residues of the PCNA interaction domain. rad27-pX8 is temperature lethal and rad27-A358* grows slowly in combination with cdc9-p. Tests of mutation avoidance, DNA repair, and compatibility with DNA repair mutations showed that rad27-K325* confers severe phenotypes similar to rad27Δ, rad27-A358* confers mild phenotypes, and rad27-pX8 confers phenotypes intermediate between the other two alleles. High-copy expression of POL30 (PCNA) suppresses the canavanine mutation rate of all the rad27 alleles, including rad27Δ. These studies show the importance of the C terminus of the flap endonuclease in DNA replication and repair and, by virtue of the initial screen, show that this portion of the enzyme helps coordinate the entry of DNA ligase during Okazaki fragment maturation.CELLULAR maintenance of genomic integrity is essential for the continued viability of all organisms. The fidelity of DNA replication has to be maintained and DNA insults have to be repaired to ensure that deleterious mutations are not passed on to progeny or cause cancerous growth. A number of cellular proteins have multiple roles in DNA replication, mutation avoidance, and repair. In Saccharomyces cerevisiae, the flap endonuclease, proliferating cell nuclear antigen (PCNA), and DNA ligase I encoded by RAD27, POL30, and CDC9, respectively, are all required for proper replication and also function to avoid mutation and to facilitate repair.The flap endonuclease, FEN-1 in humans, is a highly conserved structure-specific nuclease that has both endonuclease and 5′–3′ exonuclease activity. During lagging-strand replication these activities function to remove primers from Okazaki fragments, either by endonucleolytic cleavage of a flap made by strand displacement (Liu et al. 2004) or by sequential exonucleolytic removal of single nucleotides at the 5′ end of the primer (Murante et al. 1994).While deletion of RAD27 is not lethal to yeast cells, the rad27Δ mutant exhibits temperature-sensitive growth, is a mutator, and undergoes genomic instability (Johnson et al. 1995; Reagan et al. 1995; Tishkoff et al. 1997b; Chen and Kolodner 1999). In addition, its sensitivity to low doses of the methylating agent methylmethane sulfonate (MMS) implicates the participation of the enzyme in base excision repair (BER) (Reagan et al. 1995; Wu and Wang 1999). rad27Δ mutants have been reported to be either mildly sensitive to UV light or not sensitive to UV light (Reagan et al. 1995; Sommers et al. 1995). In the strain background that the mutant is mildly sensitive, its combination with rad2Δ yields a double mutant more sensitive than each single mutant, implying that the enzyme does not participate in RAD2-mediated nucleotide excision repair (NER) (Reagan et al. 1995). The flap endonuclease has also been implicated in double-strand break (DSB) repair by virtue of the incompatibility of rad27Δ with mutations of the DSB repair pathways (Tishkoff et al. 1997b; Symington 1998). In addition, either the yeast enzyme or its human ortholog has been shown to participate in reactions of homologous recombination, nonhomologous end joining, and telomere maintenance (Parenteau and Wellinger 1999, 2002; Wu et al. 1999; Wang et al. 2004; Kikuchi et al. 2005). Curiously, the rad27Δ mutant is not sensitive to gamma radiation but is sensitive to high doses of MMS that are thought to act as a radiomimetic agent (Reagan et al. 1995; Sommers et al. 1995).PCNA is the replicative clamp that acts as a scaffold to facilitate the loading of DNA replication and repair proteins, including DNA ligase I and the flap endonuclease to DNA (Warbrick 2000, 2006; Maga and Hubscher 2003). PCNA (POL30) is essential for cell viability, which is indicative of its central role in DNA metabolism. Biochemical characterization of its effect on the flap endonuclease shows that it stimulates its activity ∼50-fold, evidencing the productive nature of the interaction (Gomes and Burgers 2000; Tom et al. 2000; Frank et al. 2001; Stucki et al. 2001). The ability of DNA ligase to efficiently catalyze the formation of phosphodiester bonds in the DNA backbone may also be facilitated by its binding to PCNA. Tom et al. (2001) showed that, in vitro, PCNA enhances the ligation reaction 5-fold and that the stable association of DNA ligase with nicked duplex DNA requires PCNA.Both DNA ligase and the flap endonuclease bind to PCNA via their respective PCNA interactive peptide domains (PIP box). The PIP box is a conserved sequence motif of the amino acids QXXLXXFF. The PIP box fits into the interdomain connector loop (IDCL) of PCNA to provide a protein–protein interaction surface (Gomes and Burgers 2000; Chapados et al. 2004; Sakurai et al. 2005; Pascal et al. 2006). Mutations in the PIP box or the IDCL that impair the interaction of DNA ligase and the flap endonuclease to PCNA lead to genomic instability (Amin and Holm 1996; Eissenberg et al. 1997; Gary et al. 1999; Refsland and Livingston 2005; Subramanian et al. 2005). We have reported that the double mutants made by combinations of cdc9-p, rad27-p, and pol30-90—mutations with alterations of the PIP box or the IDCL in the respective proteins—have synergistic phenotypes with respect to MMS sensitivity and to trinucleotide repeat instability (Refsland and Livingston 2005). These results suggest that the two enzymes function in a concerted manner that is facilitated by PCNA.The precise nature of how PCNA coordinates the entry of the flap endonuclease and DNA ligase into the replication fork is not well understood. Biochemical and structural studies have begun to elucidate a possible ordering of these PCNA-mediated interactions. The possibility of such an ordering is underscored by the observation that DNA ligase adopts a toroidal conformation by completely encircling duplex DNA while interacting with PCNA (Pascal et al. 2004). Moreover, both PCNA and DNA ligase may be loaded onto the DNA in a mechanism utilizing the replication clamp loader replication factor C (RFC) (Levin et al. 2004; Vijayakumar et al. 2009), again suggesting a complete encirclement of the DNA by DNA ligase as well as by PCNA. PCNA and DNA ligase are similar in size and their interaction is likely to extend along the face of PCNA in a manner that would prevent other proteins such as the flap endonuclease from binding to the IDCL (Pascal et al. 2004, 2006). A biochemical study with purified yeast proteins showed that the two enzymes cannot bind simultaneously to PCNA (Subramanian et al. 2005). These studies suggest that a coordinated sequential interaction among PCNA, DNA ligase, and the flap endonuclease is important for replication and repair.Alternatively, both the flap endonuclease and DNA ligase may bind to the same molecule of PCNA. Since PCNA is a homotrimer, DNA ligase can potentially bind to one monomer while the flap endonuclease binds to another, using its extended C-terminal tail in a conformation allowing it to be tethered to PCNA concurrently with DNA ligase (Gomes and Burgers 2000; Sakurai et al. 2005). DNA ligase could also bind to PCNA in an extended conformation while the flap endonuclease cleaves the DNA. Sulfolobus solfataricus DNA ligase has been shown to have an open, extended conformation while binding to PCNA (Pascal et al. 2006). Presumably, once the flap endonuclease has removed the 5′ flap, DNA ligase acquires a closed, ring-shaped conformation to catalyze the joining of Okazaki fragments (Pascal et al. 2006).Exactly how the interaction of these enzymes with PCNA is coordinated in vivo, whether singly or concurrently, is not well understood. To further elucidate how the interaction of DNA ligase with PCNA is ordered, we performed a genetic screen to identify mutations that are synthetically lethal with cdc9-p (F44A/F35A), an allele of DNA ligase that has impaired binding to PCNA (Refsland and Livingston 2005; Subramanian et al. 2005). We postulated that genes recovered from this screen would function in DNA repair, replication, and recombination or would be involved in ordering the DNA ligase–PCNA interaction. From the screen we recovered a truncated allele of RAD27, rad27-K325*. This allele encodes a protein that lacks the PIP box and the entire C-terminal domain of the enzyme but retains the N terminus containing the nuclease activities. We have characterized this allele and compared it to two other rad27 alleles in which we have created different alterations of the C-terminal end of the flap endonuclease.  相似文献   
93.
Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42°C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection.  相似文献   
94.
Despite improved diagnostic and rederivation capabilities, research facilities still struggle to manage parvovirus infections (e.g., mouse parvovirus (MPV) and minute virus of mice) in mouse colonies. Multi-faceted approaches are needed to prevent adventitious organisms such as MPV from breaching a barrier facility. In this article, the authors document recent changes to the Salk Institute's animal care program that were intended to help manage mouse parvovirus in the barrier facility. Specifically, the Institute started to use a new disinfectant and to give mice irradiated feed. The authors found an association between these modifications and a reduction in MPV incidence and prevalence in endemically infected colonies. These data suggest that using irradiated feed and appropriate disinfectants with contemporary management practices can be an effective plan for eradicating or controlling MPV infection in a research facility. The authors recommend further study of the environmental risk factors for parvovirus infection and of potential biological interactions associated with the use of irradiated feed.  相似文献   
95.
Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?  相似文献   
96.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
97.
巴红珍  李延静  刘冬琴  高翔  闫伟  巩凡 《生物磁学》2014,(13):2529-2531
目的:研究双源CT冠状动脉血管成像诊断心肌桥的临床价值。方法:选择260例具有典型心前区不适的患者进行双源CT冠脉血管成像检查,观察其发生部位,测量其长度和深度并进行分析。结果:260例受检患者中,62例共70段存在心肌桥,检出率达20.76%,高于文献报道的检出率18.2%。所有心肌桥均发生于左前降支,其中近段17段(24.4%),中段43段(61.4%),远段10段(14.2%)。心肌桥平均长度为15.8±6.4mm,深度为1.4±0.85mm。结论:双源CT冠状动脉血管成像因其便捷无创,不受心率严格限制且价格低廉可作为心肌桥筛查的理想检查手段。  相似文献   
98.
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has been shown to have anti-inflammatory, anti-cancer, anti-steatotic effects on the liver. Autophagy also mediates similar effects; however, it is not currently known whether EGCG can regulate hepatic autophagy. Here, we show that EGCG increases hepatic autophagy by promoting the formation of autophagosomes, increasing lysosomal acidification, and stimulating autophagic flux in hepatic cells and in vivo. EGCG also increases phosphorylation of AMPK, one of the major regulators of autophagy. Importantly, siRNA knockdown of AMPK abrogated autophagy induced by EGCG. Interestingly, we observed lipid droplet within autophagosomes and autolysosomes and increased lipid clearance by EGCG, suggesting it promotes lipid metabolism by increasing autophagy. In mice fed with high-fat/western style diet (HFW; 60% energy as fat, reduced levels of calcium, vitamin D3, choline, folate, and fiber), EGCG treatment reduces hepatosteatosis and concomitantly increases autophagy. In summary, we have used genetic and pharmacological approaches to demonstrate EGCG induction of hepatic autophagy, and this may contribute to its beneficial effects in reducing hepatosteatosis and potentially some other pathological liver conditions.  相似文献   
99.
We have developed efficient methods for epitope identification and vaccine design. Our process for epitope selection based on the combined use of motif analyses, binding assays and immunogenicity evaluations is described. We also describe how the projected population coverage and vaccine design can be optimized. Finally, it is discussed how vaccine potency is evaluated by immunogenicity and antigenicity assays.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号