首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   46篇
  578篇
  2023年   7篇
  2022年   8篇
  2021年   22篇
  2020年   14篇
  2019年   14篇
  2018年   17篇
  2017年   16篇
  2016年   29篇
  2015年   34篇
  2014年   38篇
  2013年   38篇
  2012年   56篇
  2011年   49篇
  2010年   15篇
  2009年   19篇
  2008年   30篇
  2007年   37篇
  2006年   28篇
  2005年   17篇
  2004年   15篇
  2003年   19篇
  2002年   21篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1975年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有578条查询结果,搜索用时 15 毫秒
121.
This study aimed to determine the minimum inhibitory concentration (MIC) of kaempferol and quercetin against planktonic and biofilm forms of the Candida parapsilosis complex. Initially, nine C. parapsilosis sensu stricto, nine C. orthopsilosis and nine C. metapsilosis strains were used. Planktonic susceptibility to kaempferol and quercetin was assessed. Growing and mature biofilms were then exposed to the flavonoids at MIC or 10xMIC, respectively, and theywere also analyzed by confocal laser scanning microscopy. The MIC ranges were 32-128 µg ml?1 for kaempferol and 0.5-16 µg ml?1 for quercetin. Kaempferol and quercetin decreased (P?<?0.05) the metabolic activity and biomass of growing biofilms of the C. parapsilosis complex. As for mature biofilms, the metabolic effects of the flavonoids varied, according to the cryptic species, but kaempferol caused an overall reduction in biofilm biomass. Microscopic analyses showed restructuring of biofilms after flavonoid exposure. These results highlight the potential use of these compounds as sustainable resources for the control of fungal biofilms.  相似文献   
122.
Correlative ecological niche models are increasingly used to estimate potential distributions during the Last Glacial Maximum (LGM) for biogeographical research. In the case of presence‐background/pseudoabsences techniques, cold environments that are poorly represented in existing geography can complicate the process of model calibration and transfer into more extreme cold environments that were very common during the LGM (non‐analog conditions). This may lead to biologically unrealistic estimations. Using one cold‐adapted North American mammal, we explore a real scenario to better understand the effect of restricting the range of environmental conditions over which niche models are calibrated and then transferred to LGM conditions. We performed two sets of experiments in Maxent: 1) we calibrated models in the context of only present‐day climate conditions, which is the most common practice, and compared predictions under LGM conditions based on two extrapolation methods (clamping versus unconstrained); 2) we calibrated single models using both present‐day and LGM conditions as part of the same background in order to include more extreme environments in the model calibration. Our experiments led to dramatically different estimates of species’ potential distributions, showing notable differences with respect to latitudinal and elevational shifts during the LGM. Models calibrated using present‐day climates yielded biologically unrealistic estimations, suggesting that species survived in the glaciers during the LGM. Even more unrealistic estimations were achieved when clamping was enforced as the method to extrapolate. Models calibrated in the context of both modern and past climates reduced the required degree of extrapolation and allowed more realistic potential distributions, suggesting that the species avoided extremely cold conditions during the LGM. This study alerts to the possibility of obtaining implausible potential distributions during the LGM due to restricted background datasets and offers recommendations that should promote better strategies to estimate distributional changes during glaciations.  相似文献   
123.
Liang Ge  Livia Wilz  Randy Schekman 《Autophagy》2015,11(12):2372-2374
Autophagosome biogenesis requires efficient mobilization and delivery of membranes from intracellular sources. How these membranes are mobilized remains poorly understood. Our recent work reported an autophagic signal-induced membrane mobilization event from the ER-Golgi intermediate compartment (ERGIC) to generate an early autophagosomal membrane precursor. We found that starvation activates the autophagic phosphatidylinositol 3-kinase, which promotes a relocation of COPII proteins from the ER-exit sites to the ERGIC. The relocation of COPII generates ERGIC-derived COPII vesicles as a membrane template for LC3 lipidation, a key step for autophagosome biogenesis.  相似文献   
124.
The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.  相似文献   
125.
The development of improved methods for treatment of chondral defects using autologous cells in combination with biomaterials leads to a new generation of implantable devices. Their association gives rise to a hybrid construct combining biological and material components that can be specifically committed. The comprehension of cellular and molecular mechanisms of cartilage repair and the use of biomaterials in combination with chondrocytes or mesenchymal stem cells in the treatment of cartilage defects has opened a new era of therapeutical strategies. Recently, their applicability in the treatment of early lesions in osteoarthritis is under investigation. To obtain new information on the behaviour of chondrocytes and mesenchymal stem cells grown on a hyaluronan derivative scaffold (Hyaff-11) already used in cartilage repair, we analysed a series of molecules expressed by these cells by Real-Time RT-PCR and immunohistochemical analyses. The data obtained with this work showed that this biomaterial is able to reduce the expression of some catabolic molecules by human chondrocytes and provide a good environment to support the differentiation of mesenchymal stem cells in chondrogenic sense. These observations confirm Hyaff-11 as a suitable scaffold both for chondrocytes and mesenchymal stem cells for the treatment of articular cartilage defects.  相似文献   
126.
Streptococcus agalactiae is an etiological agent of several infective diseases in humans. We previously demonstrated that FbsA, a fibrinogen-binding protein expressed by this bacterium, elicits a fibrinogen-dependent aggregation of platelets. In the present communication, we show that the binding of FbsA to fibrinogen is specific and saturable, and that the FbsA-binding site resides in the D region of fibrinogen. In accordance with the repetitive nature of the protein, we found that FbsA contains multiple binding sites for fibrinogen. By using several biophysical methods, we provide evidence that the addition of FbsA induces extensive fibrinogen aggregation and has noticeable effects on thrombin-catalyzed fibrin clot formation. Fibrinogen aggregation was also found to depend on FbsA concentration and on the number of FbsA repeat units. Scanning electron microscopy evidentiated that, while fibrin clot is made of a fine fibrillar network, FbsA-induced Fbg aggregates consist of thicker fibers organized in a cage-like structure. The structural difference of the two structures was further indicated by the diverse immunological reactivity and capability to bind tissue-type plasminogen activator or plasminogen. The mechanisms of FbsA-induced fibrinogen aggregation and fibrin polymerization followed distinct pathways since Fbg assembly was not inhibited by GPRP, a specific inhibitor of fibrin polymerization. This finding was supported by the different sensitivity of the aggregates to the disruptive effects of urea and guanidine hydrochloride. We suggest that FbsA and fibrinogen play complementary roles in contributing to thrombogenesis associated with S. agalactiae infection.  相似文献   
127.
The interaction of cobalt (Co2+) and nickel (Ni2+) ions with whole cells of the photosynthetic purple bacterium Rhodobacter sphaeroides strain R26 was investigated. Active and passive uptakes were examined in cells grown in the presence of increasing amounts of Co2+ and Ni2+. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), pH titration, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to assess the role of cell envelope and metabolism in accumulating the two heavy metals. The chosen microorganism was able to uptake cobalt and nickel up to 2.2 and 0.25 mg per gram of dried cells respectively, with the largest part found bound to the cell surface. Carboxylate groups lying on the cell wall of this Gram-negative bacterium proved to be the major candidates for binding protons and metal cations. Co2+ was found to interfere with Mg2+ extracellular immobilization and transport across the membrane, indicating that these ions share binding sites on the cell envelope and ion transport systems. According to the presence of a competition mechanism, bacterial growth experiments showed that high Mg2+ concentrations are able to rescue R. sphaeroides from Co2+ toxicity.  相似文献   
128.
The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE) assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1) to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2) to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3) to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29%) of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.  相似文献   
129.
Pyranocoumarin compounds were identified to embody a novel and unique pharmacophore for anti-TB activity. A systematic approach was taken to investigate the structural characteristics. Focused libraries of compounds were synthesized and evaluated for their anti-TB activity in primary screening assays. Compounds shown to be active were further determined for MIC and MBC values. Three of the four bactericidal compounds (16, 17c, and 18f) were amino derivatives, with MIC values of 16 microg/mL and respective MBC values of 32, 32, and 64 microg/mL.  相似文献   
130.
The effects of cold, osmotic stress and abscisic acid (ABA) on polyamine accumulation were compared in the moderately freezing-sensitive wheat (Triticum aestivum L.) variety Chinese Spring (CS) and in two derived chromosome 5A substitution lines, CS(T. spelta 5A) and CS(Cheyenne 5A), exhibiting lower and higher levels of freezing tolerance, respectively. When compared with the other treatments, putrescine (Put) and spermidine (Spd) levels were much greater after cold treatment, spermine (Spm) following polyethylene glycol-induced (PEG) osmotic stress and Spm and cadaverine (Cad) after ABA treatment. During 3-week cold stress, the Put concentration, first exhibited a transient increase and decrease, and then gradually increased. These alterations may be due to changes in the expression of genes encoding the enzymes of Put synthesis. The Put content was higher in the freezing-tolerant chromosome 5A substitution line than in the sensitive one after 3 weeks of cold. In contrast to cold, ABA and PEG induced a continuous decrease in the Spd level when applied for a period of 3 weeks. The Spm content, which increased after PEG and ABA addition, was twice as high as that of Put during ABA treatment at most sampling points, but this difference was lower in the case of PEG. The Cad level, induced to a great extent by ABA, was much lower when compared with that of the other polyamines. The present experiments indicate that cold, osmotic stress and ABA have different effects on polyamines, and that some of these changes are affected by chromosome 5A and correlate with the level of stress tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号