首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   46篇
  2023年   5篇
  2022年   6篇
  2021年   22篇
  2020年   14篇
  2019年   14篇
  2018年   17篇
  2017年   16篇
  2016年   29篇
  2015年   34篇
  2014年   38篇
  2013年   38篇
  2012年   56篇
  2011年   49篇
  2010年   15篇
  2009年   19篇
  2008年   30篇
  2007年   37篇
  2006年   28篇
  2005年   17篇
  2004年   15篇
  2003年   19篇
  2002年   21篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1975年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有574条查询结果,搜索用时 31 毫秒
101.
The aim of this study was to investigate the health care available for the poor citizens of Split during the first half of the 19th century. Soon after being constructed in 1797, the Civic Hospital in Split founded by the Ergovac brothers for the needs of the poor was transformed into a military hospital. Consequently, caring for this social stratum was taken over by two inadequate shelters and later by a small civic hospital situated in the Split suburb of Dobri. The year of the application of Petar Ergovac to the supreme ruler for the transformation of the hospital building established by his family from a military to a civil institution was found, as well as the correct data regarding its return to initial idea in 1821. On the basis of the archival documents kept in the Archaeological Museum in Split and in the State Archives in Zadar, the work organization of the Civic Hospital in Split and the first stage of its change from a charitable to a public health hospital institution were presented. This study revealed the aspiration of the authorities in the first half of the 19th century to improve the health system of the city of Split.  相似文献   
102.
Although Streptococcus mutans biofilms have been useful for evaluating the cariogenic potential of dietary carbohydrates and the effects of fluoride on dental demineralization, a more appropriate biofilm should be developed to demonstrate the influence of other oral bacteria on cariogenic biofilms. This study describes the development and validation of a three-species biofilm model comprising Streptococcus mutans, Actinomyces naeslundii, and Streptococcus gordonii for the evaluation of enamel and dentin demineralization after cariogenic challenges and fluoride exposure. Single- or three-species biofilms were developed on dental substrata for 96?h, and biofilms were exposed to feast and famine episodes. The three-species biofilm model produced a large biomass, mostly comprising S. mutans (41%) and S. gordonii (44%), and produced significant demineralization in the dental substrata, although enamel demineralization was decreased by fluoride treatment. The findings indicate that the three-species biofilm model may be useful for evaluating the cariogenic potential of dietary carbohydrates other than sucrose and determining the effects of fluoride on dental substrata.  相似文献   
103.
Recent studies have shown that lectins are promising tools for use in various biotechnological processes, as well as studies of various pathological mechanisms, isolation, and characterization of glycoconjugates and understanding the mechanisms underlying pathological mechanisms conditions, including the inflammatory response. This study aimed to purify, characterize physicochemically, and predict the biological activity of Canavalia oxyphylla lectin (CoxyL) in vitro and in vivo. CoxyL was purified by a single‐step affinity chromatography in Sephadex® G‐50 column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the pure lectin consists of a major band of 30 kDa (α‐chain) and two minor components (β‐chain and γ‐chain) of 16 and 13 kDa, respectively. These data were further confirmed by electrospray ionization mass spectrometry, suggesting that CoxyL is a typical ConA‐like lectin. In comparison with the average molecular mass of α‐chain, the partial amino acid sequence obtained corresponds to approximately 45% of the total CoxyL sequence. CoxyL presented hemagglutinating activity that was specifically inhibited by monosaccharides (D‐glucose, D‐mannose, and α‐methyl‐D‐mannoside) and glycoproteins (ovalbumin and fetuin). Moreover, CoxyL was shown to be thermostable, exhibiting full hemagglutinating activity up to 60°C, and it was pH‐sensitive for 1 h, exhibiting maximal activity at pH 7.0. CoxyL caused toxicity to Artemia nauplii and induced paw edema in rats. This biological activity highlights the importance of lectins as important tools to better understand the mechanisms underlying inflammatory responses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
104.
The Hennekam lymphangiectasia–lymphedema syndrome is a genetically heterogeneous disorder. It can be caused by mutations in CCBE1 which are found in approximately 25 % of cases. We used homozygosity mapping and whole-exome sequencing in the original HS family with multiple affected individuals in whom no CCBE1 mutation had been detected, and identified a homozygous mutation in the FAT4 gene. Subsequent targeted mutation analysis of FAT4 in a cohort of 24 CCBE1 mutation-negative Hennekam syndrome patients identified homozygous or compound heterozygous mutations in four additional families. Mutations in FAT4 have been previously associated with Van Maldergem syndrome. Detailed clinical comparison between van Maldergem syndrome and Hennekam syndrome patients shows that there is a substantial overlap in phenotype, especially in facial appearance. We conclude that Hennekam syndrome can be caused by mutations in FAT4 and be allelic to Van Maldergem syndrome.  相似文献   
105.
The use of cell walls to produce cellulosic ethanol from sugarcane bagasse is a new challenge. A better knowledge of proteins involved in cell wall remodelling is essential to improve the saccharification processes. Cell suspension cultures were used for this first cell wall proteomics study of sugarcane. Proteins extracted from cell walls were identified using an adapted protocol. They were extracted using 0.2 M CaCl2 and 2 M LiCl after purification of cell walls. The proteins were then identified by the innovative nanoACQUITY UPLC MS/MS technology and bioinformatics using the translated SUCEST EST cluster database of sugarcane. The experiments were reproduced three times. Since Sorghum bicolor is the closest plant with a fully sequenced genome, homologous proteins were searched for to complete the annotation of proteins, that is, prediction of subcellular localization and functional domains. Altogether, 69 different proteins predicted to be secreted were identified among 377 proteins. The reproducibility of the experiments is discussed. These proteins were distributed into eight functional classes. Oxidoreductases such as peroxidases were well represented, whereas glycoside hydrolases were scarce. This work provides information about the proteins that could be manipulated through genetic transformation, to increase second‐generation ethanol production.  相似文献   
106.
107.
Tridimensional scaffolds can promote bone regeneration as a framework supporting the migration of cells from the surrounding tissue into the damaged tissue and as delivery systems for the controlled or prolonged release of cells, genes, and growth factors. The goal of the work was to obtain an advanced medical device for bone regeneration through coating a decellularized and deproteinized bone matrix of bovine origin with a biodegradable, biocompatible polymer, to improve the cell engraftment on the bone graft. The coating protocol was studied and set up to obtain a continuous and homogeneous polylactide-co-glycolide (PLGA) coating on the deproteinized bone matrix Orthoss® block without occluding pores and decreasing the scaffold porosity. The PLGA-coated scaffolds were characterized for their morphology and porosity. The effects of PLGA polymer coating on cell viability were assessed with the 3-(4,5-dimethyl-2-thiazolyl)-2,5 diphenyl-2H-tetrazolium assay. The polymer solution concentration and the number of polymeric layers were the main variables affecting coating efficiency and porosity of the original decellularized bone matrix. The designed polymer coating protocol did not affect the trabecular structure of the original decellularized bone matrix. The PLGA-coated decellularized bone matrix maintained the structural features, and it improved the ability in stimulating fibroblasts attachment and proliferation.  相似文献   
108.
109.
In Pseudomonas aeruginosa quorum sensing (QS) activates the production of virulence factors, playing a critical role in pathogenesis. Multiple negative regulators modulate the timing and the extent of the QS response either in the pre-quorum or post-quorum phases of growth. This regulation likely increases P. aeruginosa phenotypic plasticity and population fitness, facilitating colonization of challenging environments such as higher organisms. Accordingly, in addition to the factors required for QS signals synthesis and response, also QS regulators have been proposed as targets for anti-virulence therapies. However, while it is known that P. aeruginosa mutants impaired in QS are attenuated in their pathogenic potential, the effect of mutations causing a dysregulated timing and/or magnitude of the QS response has been poorly investigated so far in animal models of infection. In order to investigate the impact of QS dysregulation on P. aeruginosa pathogenesis in a murine model of lung infection, the QteE and RsaL proteins have been selected as representatives of negative regulators controlling P. aeruginosa QS in the pre- and post-quorum periods, respectively. Results showed that the qteE mutation does not affect P. aeruginosa lethality and ability to establish chronic infection in mice, despite causing a premature QS response and enhanced virulence factors production in test tube cultures compared to the wild type. Conversely, the post-quorum dysregulation caused by the rsaL mutation hampers the establishment of P. aeruginosa chronic lung infection in mice without affecting the mortality rate. On the whole, this study contributes to a better understanding of the impact of QS regulation on P. aeruginosa phenotypic plasticity during the infection process. Possible fallouts of these findings in the anti-virulence therapy field are also discussed.  相似文献   
110.
DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号