首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   662篇
  免费   28篇
  国内免费   1篇
  691篇
  2023年   2篇
  2022年   13篇
  2021年   9篇
  2020年   4篇
  2019年   10篇
  2018年   14篇
  2017年   10篇
  2016年   12篇
  2015年   24篇
  2014年   33篇
  2013年   47篇
  2012年   60篇
  2011年   62篇
  2010年   36篇
  2009年   29篇
  2008年   40篇
  2007年   35篇
  2006年   38篇
  2005年   36篇
  2004年   29篇
  2003年   28篇
  2002年   27篇
  2001年   4篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1997年   3篇
  1996年   8篇
  1995年   3篇
  1994年   7篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有691条查询结果,搜索用时 0 毫秒
71.
72.
The rationale for targeting the human di-/tripeptide transporter hPEPT1 for oral drug delivery has been well established by several drug and prodrug cases. The aim of this study was to synthesize novel ketomethylene modified tripeptidomimetics and to investigate their binding affinity for hPEPT1. Three related tripeptidomimetics of the structure H-Phe-ψ[COCH2]-Ser(Bz)-Xaa-OH were synthesized applying the tandem chain extension aldol reaction, where amino acid derived β-keto imides were stereoselectively converted to α-substituted γ-keto imides. In addition, three corresponding tripeptides, composed of amide bonds, were synthesized for comparison of binding affinities. The six investigated compounds were all defined as high affinity ligands (Ki-values <0.5 mM) for hPEPT1 by measuring the concentration dependent inhibition of apical [14C]Gly-Sar uptake in Caco-2 cells. Consequently, the ketomethylene replacement for the natural amide bond and α-side chain modifications appears to offer a promising strategy to modify tripeptidic structures while maintaining a high affinity for hPEPT1.  相似文献   
73.

Introduction  

It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern. The current study investigated whether the overall spontaneous FM pain pattern can be reproduced by local and referred pain from active MTPs located in different muscles.  相似文献   
74.
75.
76.
Decreasing the dietary intake of methionine exerts robust anti‐adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti‐adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine‐ and cysteine‐titrated diets, we demonstrate that the anti‐adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non‐glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck‐M. In mice, the magnitude of SAAR‐induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age‐at‐onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross‐sectional epidemiological study. Controlled feeding of low‐SAA, high‐polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.  相似文献   
77.
78.
Metabolically unstable proteins are involved in a multitude of regulatory networks, including those that control cell signaling, the cell cycle and in many responses to physiological stress. In the present study, we have determined the stability and characterized the degradation process of some members of the G(q) class of heterotrimeric G proteins. Pulse-chase experiments in HEK293 cells indicated a rapid turnover of endogenously expressed Galpha(q) and overexpressed Galpha(q) and Galpha(16) subunits. Pretreatment with proteasome inhibitors attenuated the degradation of both G alpha subunits. In contrast, pretreatment of cells with inhibitors of lysosomal proteases and nonproteasomal cysteine proteases had very little effect on the stability of the proteins. Significantly, the turnover of these proteins is not affected by transient activation of their associated receptors. Fractionation studies showed that the rates of Galpha(q) and Galpha16 degradation are accelerated in the cytosol. In fact, we show that a mutant Galpha(q) which lacks its palmitoyl modification site, and which is localized almost entirely in the cytoplasm, has a marked increase in the rate of degradation. Taken together, these results suggest that the G(q) class proteins are degraded through the proteasome pathway and that cellular localization and/or other protein interactions determine their stability.  相似文献   
79.
Steady-state and transient kinetic studies were performed to functionally analyze the overall and partial reactions of the Ca(2+) transport cycle of the human secretory pathway Ca(2+)/Mn(2+)-ATPase 1 (SPCA1) isoforms: SPCA1a, SPCA1b, SPCA1c, and SPCA1d (encoded by ATP2C1, the gene defective in Hailey-Hailey disease) upon heterologous expression in mammalian cells. The expression levels of SPCA1 isoforms were 200-350-fold higher than in control cells except for SPCA1c, whose low expression level appears to be the effect of rapid degradation because of protein misfolding. Relative to SERCA1a, the active SPCA1a, SPCA1b, and SPCA1d enzymes displayed extremely high apparent affinities for cytosolic Ca(2+) in activation of the overall ATPase and phosphorylation activities. The maximal turnover rates of the ATPase activity for SPCA1 isoforms were 4.7-6.4-fold lower than that of SERCA1a (lowest for the shortest SPCA1a isoform). The kinetic analysis traced these differences to a decreased rate of the E(1) approximately P(Ca) to E(2)-P transition. The apparent affinity for inorganic phosphate was reduced in the SPCA1 enzymes. This could be accounted for by an enhanced rate of the E(2)-P hydrolysis, which showed constitutive activation, lacking the SERCA1a-specific dependence on pH and K(+).  相似文献   
80.
The X-ray structure of the ligand-binding core of the kainate receptor GluR5 (GluR5-S1S2) in complex with (S)-glutamate was determined to 1.95 A resolution. The overall GluR5-S1S2 structure comprises two domains and is similar to the related AMPA receptor GluR2-S1S2J. (S)-glutamate binds as in GluR2-S1S2J. Distinct features are observed for Ser741, which stabilizes a highly coordinated network of water molecules and forms an interdomain bridge. The GluR5 complex exhibits a high degree of domain closure (26 degrees) relative to apo GluR2-S1S2J. In addition, GluR5-S1S2 forms a novel dimer interface with a different arrangement of the two protomers compared to GluR2-S1S2J.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号