首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   11篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   12篇
  2014年   15篇
  2013年   11篇
  2012年   19篇
  2011年   15篇
  2010年   7篇
  2009年   10篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   11篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  1995年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
91.
Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2–3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months.  相似文献   
92.
93.

Analysis of metabolomics data often goes beyond the task of discovering biomarkers and can be aimed at recovering other important characteristics of observed metabolomic changes. In this paper we explore different methods to detect the presence of distinctive phases in seasonal-responsive changes of metabolomic patterns of Siberian spruce (Picea obovata) during cold acclimation occurred in the period from mid-August to January. Multivariate analysis, specifically orthogonal projection to latent structures discriminant analysis (OPLS-DA), identified time points where the metabolomic patterns underwent substantial modifications as a whole, revealing four distinctive phases during acclimation. This conclusion was re-examined by a univariate analysis consisting of multiple pair-wise comparisons to identify homogeneity intervals for each metabolite. These tests complemented OPLS-DA, clarifying biological interpretation of the classification: about 60% of metabolites found responsive to the cold stress indeed changed at one or more of the time points predicted by OPLS-DA. However, the univariate approach did not support the proposed division of the acclimation period into four phases: less than 10% of metabolites altered during the acclimation had homogeneous levels predicted by OPLS-DA. This demonstrates that coupling the classification found by OPLS-DA and the analysis of dynamics of individual metabolites obtained by pair-wise multicomparisons reveals a more correct characterization of biochemical processes in freezing tolerant trees and leads to interpretations that cannot be deduced by either method alone. The combined analysis can be used in other ‘omics’-studies, where response factors have a causal dependence (like the time in the present work) and pair-wise multicomparisons are not conservative.

  相似文献   
94.
Dzhekieva L  Kumar I  Pratt RF 《Biochemistry》2012,51(13):2804-2811
The DD-peptidases or penicillin-binding proteins (PBPs) catalyze the final steps of bacterial peptidoglycan biosynthesis and are inhibited by the β-lactam antibiotics. There is at present a question of whether the active site structure and activity of these enzymes is the same in the solubilized (truncated) DD-peptidase constructs employed in crystallographic and kinetics studies as in membrane-bound holoenzymes. Recent experiments with peptidoglycan-mimetic boronic acids have suggested that these transition state analogue-generating inhibitors may be able to induce reactive conformations of these enzymes and thus inhibit strongly. We have now, therefore, measured the dissociation constants of peptidoglycan-mimetic boronic acids from Escherichia coli and Bacillus subtilis PBPs in membrane preparations and, in the former case, in vivo, by means of competition experiments with the fluorescent penicillin Bocillin Fl. The experiments showed that the boronic acids bound measurably (K(i) < 1 mM) to the low-molecular mass PBPs but not to the high-molecular mass enzymes, both in membrane preparations and in whole cells. In two cases, E. coli PBP2 and PBP5, the dissociation constants obtained were very similar to those obtained with the pure enzymes in homogeneous solution. The boronic acids, therefore, are unable to induce tightly binding conformations of these enzymes in vivo. There is no evidence from these experiments that DD-peptidase inhibitors are more or less effective in vivo than in homogeneous solution.  相似文献   
95.

Background

The effect of combination of fibrate with statin on major adverse cardiovascular events (MACE) following acute coronary syndrome (ACS) hospitalization is unclear. The main aim of this study was to investigate the 30-day rate of MACE in patients who participated in the nationwide ACS Israeli Surveys (ACSIS) and were treated on discharge with a fibrate (mainly bezafibrate) and statin combination vs. statin alone.

Methods

The study population comprised 8,982 patients from the ACSIS 2000, 2002, 2004, 2006, 2008 and 2010 enrollment waves who were alive on discharge and received statin. Of these, 8,545 (95%) received statin alone and 437 (5%) received fibrate/statin combination. MACE was defined as a composite measure of death, recurrent MI, recurrent ischemia, stent thrombosis, ischemic stroke and urgent revascularization.

Results

Patients from the combination group were younger (58.1±11.9 vs. 62.9±12.6 years). However, they had significantly more co-morbidities (hypertension, diabetes), current smokers and unfavorable cardio-metabolic profiles (with respect to glucose, total cholesterol, triglyceride and HDL-cholesterol). Development of MACE was recorded in 513 (6.0%) patients from the statin monotherapy group vs. 13 (3.2%) from the combination group, p = 0.01. 30-day re-hospitalization rate was significantly lower in the combination group: 68 (15.6%) vs. 1691 (19.8%) of patients, respectively; p = 0.03. Multivariable analysis identified the fibrate/statin combination as an independent predictor of reduced risk of MACE with odds ratio of 0.54, 95% confidence interval 0.32–0.94.

Conclusion

A significantly lower risk of 30-day MACE rate was observed in patients receiving combined fibrate/statin treatment following ACS compared with statin monotherapy. However, caution should be exercised in interpreting these findings taking into consideration baseline differences between our observational study groups.  相似文献   
96.
Meiotic crossovers are necessary to generate balanced gametes and to increase genetic diversity. Even if crossover number is usually constrained, recent results suggest that manipulating karyotype composition could be a new way to increase crossover frequency in plants. In this study, we explored this hypothesis by analyzing the extent of crossover variation in a set of related diploid AA, allotriploid AAC, and allotetraploid AACC Brassica hybrids. We first used cytogenetic methods to describe the meiotic behavior of the different hybrids. We then combined a cytogenetic estimation of class I crossovers in the entire genome by immunolocalization of a key protein, MutL Homolog1, which forms distinct foci on meiotic chromosomes, with genetic analyses to specifically compare crossover rates between one pair of chromosomes in the different hybrids. Our results showed that the number of crossovers in the allotriploid AAC hybrid was higher than in the diploid AA hybrid. Accordingly, the allotetraploid AACC hybrid showed an intermediate behavior. We demonstrated that this increase was related to hybrid karyotype composition (diploid versus allotriploid versus allotetraploid) and that interference was maintained in the AAC hybrids. These results could provide another efficient way to manipulate recombination in traditional breeding and genetic studies.  相似文献   
97.
Fusion of herpesviruses with their target cells requires a minimum of three glycoproteins, namely, gB and a complex of gH and gL. Epstein-Barr virus (EBV) fusion with an epithelial cell requires no additional virus glycoproteins, and we have shown previously that it can be initiated by an interaction between integrin αvβ6 or αvβ8 and gHgL. We now report that integrin αvβ5 can also bind to gHgL and trigger fusion. Binding of gHgL to integrins is a two-step reaction. The first step, analyzed by surface plasmon resonance, was fast, with high association and low dissociation rate constants. The second step, detected by fluorescence spectroscopy of gHgL labeled at cysteine 153 at the domain I-domain II interface with the environmentally sensitive probes acrylodan and IANBD, involved a slower conformational change. Interaction of gHgL with neutralizing monoclonal antibodies or Fab' fragments was also consistent with a two-step reaction involving fast high-affinity binding and a subsequent slower conformational change. None of the antibodies bound to the same epitope, and none completely inhibited integrin binding. However, binding of each decreased the rate of conformational change induced by integrin binding, suggesting that neutralization might involve a conformational change that precludes fusion. Overall, the data are consistent with the interaction of gHgL with an integrin inducing a functionally important rearrangement at the domain I-domain II interface.  相似文献   
98.
Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails.  相似文献   
99.
Two hallmark features of meiosis are i) the formation of crossovers (COs) between homologs and ii) the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype) in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号