首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   11篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   12篇
  2014年   15篇
  2013年   11篇
  2012年   19篇
  2011年   15篇
  2010年   7篇
  2009年   10篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   11篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  1995年   1篇
排序方式: 共有163条查询结果,搜索用时 484 毫秒
111.
In this study, we have used surface plasmon resonance (SPR) and isothermal microtitration calorimetry (ITC) to study the mechanism of complex formation between the Hsp70 molecular chaperone, DnaK, and its cochaperone, GrpE, which is a nucleotide exchange factor. Experiments were geared toward understanding the influence of DnaK's three domains, the ATPase (residues 1-388), substrate-binding (residues 393-507), and lid (residues 508-638) domains, on complex formation with GrpE. We show that the equilibrium dissociation constants for the interaction of GrpE with wtDnaK, lidless DnaK(2-517), the ATPase domain (2-388), and the substrate-binding fragment (393-507) are 64 (+/-16) nM, 4.0 (+/-1.5) nM, 35 (+/-10) nM, and 67 (+/-11) microM, respectively, and that the on-rate constant for the different reactions varies by over 4 orders of magnitude. SPR experiments revealed that GrpE-DnaK(393-507) complex formation is inhibited by added peptide and abolished when the 33-residue flexible "tail" of GrpE is deleted. Such results strongly suggest that the 33-residue flexible N-terminal tail of GrpE binds in the substrate-binding pocket of DnaK. This unique mode of binding between GrpE's tail and DnaK contributes to, but does not fully explain, the decrease in K(d) from 64 to 4 nM upon deletion of DnaK's lid. The possibility that deletion of DnaK's lid creates a more symmetrically shaped molecule, with enhanced affinity to GrpE, is also discussed. Our results reveal a complex set of molecular interactions between DnaK and its cochaperone GrpE. We discuss the impact of each domain on complex formation and dissociation.  相似文献   
112.
New anxiolytics have been discovered by prediction of biological activity with computer programs pass and derek for a heterogeneous set of 5494 highly chemically diverse heterocyclic compounds (thiazoles, pyrazoles, isatins, a-fused imidazoles and others). The majority of tested compounds exhibit the predicted anxiolytic effect. The most potent activity was found in 2-(4-nitrophenyl)-3-(4-phenylpiperazinomethyl)imidazo[1,2-a]pyridine 8, 1-[(4-bromophenyl)-2-oxoethyl]-3-(1,3-dioxolano)-2-indolinone 3, 5-hydroxy-3-methoxycarbonyl-1-phenylpyrazole 5 and 2-(4-fluorophenyl)-3-(4-methylpiperazinomethyl)imidazo[1,2-a]pyridine 7. The application of the computer-assisted approach significantly reduced the number of synthesized and tested compounds and increased the chance of finding new chemical entities (NCEs).  相似文献   
113.
Giardia lamblia is an early branching protist that possesses peripheral vacuoles (PVs) with characteristics of lysosome-like organelles, located underneath the plasma membrane. In more evolved cells, lysosomal protein trafficking is achieved by cargo recognition involving adaptor protein (AP) complexes that recognize specific amino acid sequences (tyrosine and/or dileucine motifs) within the cytoplasmic tail of membrane proteins. Previously, we reported that Giardia has a tyrosine-based sorting system, which mediates the targeting of a membrane-associated cysteine protease (encystation-specific cysteine protease, ESCP) to the PVs. Here, we show that Giardia AP1 mediates the transport of ESCP and the soluble acid phosphatase (AcPh) to the PVs. By using the yeast two-hybrid assay we found that the ESCP tyrosine-based motif interacts specifically with the medium subunit of AP1 (Gimicroa). Hemagglutinin-tagged Gimicroa colocalizes with ESCP and AcPh and coimmunoprecipitates with clathrin, suggesting that protein trafficking toward the PVs is clathrin-adaptin dependent. Targeted disruption of Gimicroa results in mislocalization of ESCP and AcPh but not of variant-specific surface proteins. Our results suggest that, unlike mammalian cells, only AP1 is involved in anterograde protein trafficking to the PVs in Giardia. Moreover, even though Giardia trophozoites lack a morphologically discernible Golgi apparatus, the presence of a clathrin-adaptor system suggests that this parasite possess a primitive secretory organelle capable of sorting proteins similar to that of more evolved cells.  相似文献   
114.
ClpB and DnaK form a bi-chaperone system that reactivates strongly aggregated proteins in vivo and in vitro. Previously observed interaction between purified ClpB and DnaK suggested that one of the chaperones might recruit its partner during substrate reactivation. We show that ClpB from Escherichia coli binds at the substrate binding site of DnaK and the interaction is supported by the N-terminal domain and the middle domain of ClpB. Moreover, the interaction between ClpB and DnaK depends on the nucleotide-state of DnaK: it is stimulated by ADP and inhibited by ATP. These observations indicate that DnaK recognizes selected structural motifs in ClpB as "pseudo-substrates" and that ClpB may compete with bona fide substrates of DnaK. We conclude that direct interaction between ClpB and DnaK does not mediate a substrate transfer between the chaperones, it may, however, play a role in the recruitment of the bi-chaperone system to specific recognition sites in aggregated particles.  相似文献   
115.
Chromosoma - In prophase of the first meiotic division, chromatin forms a compact spherical cluster called the karyosome within the enlarged oocyte nucleus in Drosophila melanogaster. Similar...  相似文献   
116.
Within Fabaceae, legume species have a variable genome size, chromosome number, and ploidy level. The genome distribution of ribosomal genes, easily detectable by fluorescent in situ hybridization (FISH), is a good tool for anchoring physical and genetic comparative maps. The organisation of 45S rDNA and 5S loci was analysed by FISH in the 4 closely related species: Pisum sativum, Medicago truncatula, Medicago sativa (2 diploid taxa), and Lathyrus sativus. The 2 types of rDNA arrays displayed interspecific variation in locus number and location, but little intraspecific variation was detected. In the model legume, M. truncatula, the presence of 2 adjacent 45S rDNA loci was demonstrated, and the location of the rDNA loci was independent of the general evolution of the genome DNA. The different parameters relative to clustering of the rDNA loci in specific chromosome regions and the possible basis of rDNA instability are discussed.  相似文献   
117.
118.
Double-strand breaks in mammalian DNA lead to rapid phosphorylation of C-terminal serines in histone H2AX (gamma-H2AX) and formation of large nuclear gamma-H2AX foci. After DNA repair these foci disappear, but molecular mechanism of elimination of gamma-H2AX foci remains unclear. H2AX protein can be phosphorylated and dephosphorylated in vitro in the absence of chromatin. Here, we compared global exchange of GFP-H2AX with kinetics of formation and elimination of radiation-induced gamma-H2AX foci. Maximal number of gamma-H2AX foci is observed one hour after irradiation, when approximately 20% of GFP-H2AX is exchanged suggesting that formation of the foci mostly occurs by in situ H2AX phosphorylation. However, slow elimination of gamma-H2AX foci is weakly affected by an inhibitor of protein phosphatases calyculin A which is known as an agent suppressing dephosphorylation of gamma-H2AX. This indicates that elimination of gamma-H2AX foci may be independent of dephosphorylation of H2AX which can occur after its removal from the foci by exchange.  相似文献   
119.
The respiration of dissolved organic matter (DOM) by aerobic heterotrophic bacterioplankton in boreal surface waters is one of the major factors that regulate CO2 exchange of lakes and rivers with the atmosphere in arctic and subarctic zones. The DOM that originates from topsoil leaching and vegetation degradation is brought to the lakes by surface flow and is subjected to coagulation and degradation by heterotrophic bacteria, which are well-established processes in the majority of boreal aquatic settings. The behavior of colloids and organic complexes of trace metals during this process is virtually unknown. In this work, we studied the interaction of two model heterotrophic bacteria, soil Pseudomonas aureofaciens and aquatic Pseudomonas reactans, with peat and Sphagnum moss leachates from the permafrost region under controlled laboratory conditions in nutrient-free media. The moss leachate was the better substrate for bacterial survival, with P. reactans exhibiting an order of magnitude higher live cell number compared with P. aureofaciens. In eight-day experiments, we analyzed organic carbon and ~40 major and trace elements (TEs) during heterotrophic bacteria growth. The total net decrease in the concentration of dissolved organic carbon (DOC) was similar for both bacteria and ranged from 30 mg gwet?1 to ≤10 mg gwet?1 during 8 days for the moss and peat leachate, respectively. Despite significant evolutions of pH, DOC, dissolved inorganic carbon (DIC), and cell number, most major (Mg, K, and Ca) and TEs remained nearly constant (within ±30% of the control). Only Fe, Al, P, Zn, Mn, Co, and Ba and to a much lesser extent Cd, Pb, Rare Earth Elements (REEs), U, Ti, and Zr were affected (p??1 to µg L?1 and followed the order DOC >> P >> Ba > Zn ≥ Fe ≥ Al > Mn > Cu ≥ Sr > Zr ≥ Ti > Ni ≥ Co > REEs ≥ U > Hf~Th, which reflected the abundance of the elements in the two substrates. Generally, the soil exopolysaccharide producing bacterium P. aureofaciens in the peat leachate had the greatest impact of the four combinations investigated in this study (two bacteria with two substrates). Under ongoing environmental changes in the boreal zone, the autochthonous processes of bacterioplankton activity are able to decrease the concentrations of a very limited number of TEs, including mainly Fe and several macro- (P) and micro- (Zn, Mn, and Ba) nutrients.  相似文献   
120.
Previous studies have shown after the resolution of acute infection and viraemia, foot-and-mouth disease virus (FMDV) capsid proteins and/or genome are localised in the light zone of germinal centres of lymphoid tissue in cattle and African buffalo. The pattern of staining for FMDV proteins was consistent with the virus binding to follicular dendritic cells (FDCs). We have now demonstrated a similar pattern of FMDV protein staining in mouse spleens after acute infection and showed FMDV proteins are colocalised with FDCs. Blocking antigen binding to complement receptor type 2 and 1 (CR2/CR1) prior to infection with FMDV significantly reduced the detection of viral proteins on FDCs and FMDV genomic RNA in spleen samples. Blocking the receptors prior to infection also significantly reduced neutralising antibody titres, through significant reduction in their avidity to the FMDV capsid. Therefore, the binding of FMDV to FDCs and sustained induction of neutralising antibody responses are dependent on FMDV binding to CR2/CR1 in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号