首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80098篇
  免费   6032篇
  国内免费   5112篇
  2024年   100篇
  2023年   910篇
  2022年   2235篇
  2021年   4173篇
  2020年   2725篇
  2019年   3367篇
  2018年   3310篇
  2017年   2415篇
  2016年   3414篇
  2015年   5032篇
  2014年   5789篇
  2013年   6254篇
  2012年   7400篇
  2011年   6502篇
  2010年   3954篇
  2009年   3571篇
  2008年   3995篇
  2007年   3595篇
  2006年   3113篇
  2005年   2601篇
  2004年   2178篇
  2003年   1882篇
  2002年   1612篇
  2001年   1398篇
  2000年   1333篇
  1999年   1224篇
  1998年   709篇
  1997年   694篇
  1996年   691篇
  1995年   634篇
  1994年   566篇
  1993年   384篇
  1992年   588篇
  1991年   450篇
  1990年   417篇
  1989年   289篇
  1988年   257篇
  1987年   239篇
  1986年   171篇
  1985年   200篇
  1984年   110篇
  1983年   122篇
  1982年   74篇
  1981年   60篇
  1980年   40篇
  1979年   66篇
  1977年   34篇
  1976年   33篇
  1974年   42篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
93.
The purpose of this review is to provide an overview of the effects of adenovirus and influenza virus infections on obesity in various experimental models. We reviewed studies that were conducted within the past 10 years and were related to virus infection and obesity prevalence. Here, we discuss a different causal relationship between adenovirus and influenza infections with obesity. Adenovirus infection can cause obesity, whereas obesity can be a risk factor for increasing influenza virus infection and increases the risk of morbidity and mortality. The prevalence of obesity due to adenovirus infections may be due to an increase in glucose uptake and reduction in lipolysis caused by an increase in corticosterone secretion. Adenovirus infections may lead to increases in appetite by decreasing norepinephrine and leptin levels and also cause immune dysfunction. The relationship between obesity and influenza virus infection could be summarized by the following features: decreases in memory T-cell functionality and interferon (IFN)-α, IFN-β, and IFN-γ mRNA expression, increases in viral titer and infiltration, and impaired dendritic cell function in obese individuals. Moreover, leptin resistance may play an important role in increasing influenza virus infections in obese individuals. In conclusion, prevention of adenovirus infections could be a good approach for reducing obesity prevalence, and prevention of obesity could reduce influenza virus infections from the point of view of viral infections and obesity.  相似文献   
94.
Lin  Xiang  Lin  Shuang  Liu  Yuanlan  Zhao  Haiyan  Wang  Li  Hasi  Wuliji 《Plasmonics (Norwell, Mass.)》2018,13(5):1749-1758
Plasmonics - Large-scale ordered two-dimensional (2D) superlattices at oil/water interface were fabricated using single-crystal Au nanospheres (NSs) with different diameters as building blocks. A...  相似文献   
95.
Streamer F mutants have been found to be useful tools for studying the pathway of signal transduction leading to chemotactic cell movement. The primary defect in these mutants is in the structural gene for the cyclic GMP specific phosphodiesterase. This defect allows a larger and prolonged peak of cyclic GMP to be formed in response to the chemotactic stimulus, cyclic AMP. This characteristic aberrant pattern of cyclic GMP accumulation in the streamer F mutants has been correlated with similar patterns of changes in the influx of calcium from the medium, myosin II association with the cytoskeleton, myosin phosphorylation and a decrease in speed of movement of the amoebae. From these studies a sequence of events can be deduced that leads from cell surface cyclic AMP stimulation to cell polarization prior to movement of the amoebae in response to the chemotactic stimulus.  相似文献   
96.
97.
The oncolytic peptide LTX-315 has been designed for killing human cancer cells and turned out to stimulate anti-cancer immune responses when locally injected into tumors established in immunocompetent mice. Here, we investigated the question whether LTX-315 induces apoptosis or necrosis. Transmission electron microscopy or morphometric analysis of chromatin-stained tumor cells revealed that LTX-315 failed to induce apoptotic nuclear condensation and rather induced a necrotic phenotype. Accordingly, LTX-315 failed to stimulate the activation of caspase-3, and inhibition of caspases by means of Z-VAD-fmk was unable to reduce cell killing by LTX-315. In addition, 2 prominent inhibitors of regulated necrosis (necroptosis), namely, necrostatin-1 and cycosporin A, failed to reduce LTX-315-induced cell death. In conclusion, it appears that LTX-315 triggers unregulated necrosis, which may contribute to its pro-inflammatory and pro-immune effects.  相似文献   
98.
Due to the direction, intensity, duration and consistency of genetic selection, especially recent artificial selection, the production performance of domestic pigs has been greatly changed. Therefore, we reasoned that there must be footprints or selection signatures that had been left during domestication. In this study, with porcine 60K BeadChip genotyping data from both commercial Large White and local Chinese Tongcheng pigs, we calculated the extended haplotype homozygosity values of the two breeds using the long‐range haplotype method to detect selection signatures. We found 34 candidate regions, including 61 known genes, from Large White pigs and 25 regions comprising 57 known genes from Tongcheng pigs. Many selection signatures were found on SSC1, SSC4, SSC7 and SSC14 regions in both populations. According to quantitative trait loci and network pathway analyses, most of the regions and genes were linked to growth, reproduction and immune responses. In addition, the average genetic differentiation coefficient FST was 0.254, which means that there had already been a significant differentiation between the breeds. The findings from this study can contribute to further research on molecular mechanisms of pig evolution and domestication and also provide valuable references for improvement of their breeding and cultivation.  相似文献   
99.
100.
Experiments using nanopores demonstrated that a salt gradient enhances the capture rate of DNA and reduces its translocation speed. These two effects can help to enable electrical DNA sequencing with nanopores. Here, we provide a quantitative theoretical evaluation that shows the positive net charges, which accumulate around the pore entrance due to the salt gradient, are responsible for the two observed effects: they reinforce the electric capture field, resulting in promoted molecule capture rate; and they induce cationic electroosmotic flow through the nanopore, thus significantly retarding the motion of the anionic DNA through the nanopore. Our multiphysical simulation results show that, during the polymer trapping stage, the former effect plays the major role, thus resulting in promoted DNA capture rate, while during the nanopore-penetrating stage the latter effect dominates and consequently reduces the DNA translocation speed significantly. Quantitative agreement with experimental results has been reached by further taking nanopore wall surface charges into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号