首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   823篇
  免费   97篇
  国内免费   2篇
  2022年   4篇
  2021年   21篇
  2020年   9篇
  2019年   13篇
  2018年   9篇
  2017年   7篇
  2016年   15篇
  2015年   21篇
  2014年   32篇
  2013年   40篇
  2012年   56篇
  2011年   51篇
  2010年   39篇
  2009年   32篇
  2008年   41篇
  2007年   38篇
  2006年   32篇
  2005年   40篇
  2004年   44篇
  2003年   31篇
  2002年   37篇
  2001年   20篇
  2000年   12篇
  1999年   29篇
  1998年   17篇
  1997年   7篇
  1996年   9篇
  1995年   11篇
  1994年   6篇
  1993年   10篇
  1992年   13篇
  1991年   18篇
  1990年   16篇
  1989年   11篇
  1988年   18篇
  1987年   8篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   10篇
  1982年   8篇
  1981年   3篇
  1979年   8篇
  1978年   4篇
  1977年   9篇
  1976年   6篇
  1975年   3篇
  1971年   4篇
  1969年   3篇
  1968年   3篇
排序方式: 共有922条查询结果,搜索用时 125 毫秒
781.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by a small number of sugars (glucose, maltose, starch at 1 g l(-1)). Glucose consumption starts after other substrates have been depleted. Glucose metabolism proceeds via a constitutive, salt-inhibited hexokinase and a constitutive salt-dependent nicotinamide adenine dinucleotide phosphate (NADP)-linked glucose-6-phosphate dehydrogenase. Glucose dehydrogenase and fructose-1,6-bisphosphate aldolase activity could not be detected. It is therefore suggested that Salinibacter metabolizes glucose by the classic Entner-Doudoroff pathway and not by the Embden-Meyerhof glycolytic pathway or by the modified Entner-Doudoroff pathway present in halophilic Archaea of the family Halobacteriaceae, in which the phosphorylation step is postponed. However, activity of 2-keto-3-deoxy-6-phosphogluconate aldolase could not be detected in extracts of Salinibacter cells, whether or not grown in the presence of glucose.  相似文献   
782.
Hemangioma is the most common soft-tissue tumor of infancy. Despite the frequency of these vascular tumors, the origin of hemangioma-endothelial cells is unknown. Circulating endothelial progenitor cells (EPCs) have recently been identified as vascular stem cells with the capacity to contribute to postnatal vascular development. We have attempted to determine whether circulating EPCs are increased in hemangioma patients and thereby provide insight into the role of EPCs in hemangioma growth. METHODS AND RESULTS: Peripheral blood mononuclear cells (PBMCs) were isolated from hemangioma patients undergoing surgical resection (N = 5) and from age-matched controls (N = 5) undergoing strabismus correction surgery. PBMCs were stained with fluorescent-labeled antibodies for AC133, CD34, and VEGFR2/KDR. Fluorescent-labeled isotype antibodies served as negative controls. Histologic sections of surgical specimens were stained with the specific hemangioma markers Glut1, CD32, and merosin, to confirm the diagnosis of common hemangioma of infancy. EPCs harvested from healthy adult volunteers were stained with Glut1, CD32, and merosin, to assess whether cultured EPCs express known hemangioma markers. Hemangioma patients had a 15-fold increase in the number of circulating CD34 AC133 dual-staining cells relative to controls (0.78+/-0.14% vs.0.052+/-0.017%, respectively). Similarly, the number of PBMCs that stained positively for both CD34 and KDR was also increased in hemangioma patients (0.49+/-0.074% vs. 0.19+/-0.041% in controls). Cultured EPCs stained positively for the known hemangioma markers Glut1, CD32, merosin. CONCLUSIONS: This is the first study to suggest a role for EPCs in the pathogenesis of hemangioma. Our results imply that increased levels of circulating EPCs may contribute to the formation of this vascular tumor.  相似文献   
783.
784.
Scorpion alpha-toxins are similar in their mode of action and three-dimensional structure but differ considerably in affinity for various voltage-gated sodium channels (NaChs). To clarify the molecular basis of the high potency of the alpha-toxin LqhalphaIT (from Leiurus quinquestriatus hebraeus) for insect NaChs, we identified by mutagenesis the key residues important for activity. We have found that the functional surface is composed of two distinct domains: a conserved "Core-domain" formed by residues of the loops connecting the secondary structure elements of the molecule core and a variable "NC-domain" formed by a five-residue turn (residues 8-12) and a C-terminal segment (residues 56-64). We further analyzed the role of these domains in toxin activity on insects by their stepwise construction onto the scaffold of the anti-mammalian alpha-toxin, Aah2 (from Androctonus australis hector). The chimera harboring both domains, Aah2(LqhalphaIT(face)), was as active to insects as LqhalphaIT. Structure determination of Aah2(LqhalphaIT(face)) by x-ray crystallography revealed that the NC-domain deviates from that of Aah2 and forms an extended protrusion off the molecule core as appears in LqhalphaIT. Notably, such a protrusion is observed in all alpha-toxins active on insects. Altogether, the division of the functional surface into two domains and the unique configuration of the NC-domain illuminate the molecular basis of alpha-toxin specificity for insects and suggest a putative binding mechanism to insect NaChs.  相似文献   
785.
Viral replication depends on specific interactions with host factors. For example, poliovirus RNA replication requires association with intracellular membranes. Brefeldin A (BFA), which induces a major rearrangement of the cellular secretory apparatus, is a potent inhibitor of poliovirus RNA replication. Most aspects governing the relationship between viral replication complex and the host membranes remain poorly defined. To explore these interactions, we used a genetic approach and isolated BFA-resistant poliovirus variants. Mutations within viral proteins 2C and 3A render poliovirus resistant to BFA. In the absence of BFA, viruses containing either or both of these mutations replicated similarly to wild type. In the presence of BFA, viruses carrying a single mutation in 2C or 3A exhibited an intermediate-growth phenotype, while the double mutant was fully resistant. The viral proteins 2C and 3A have critical roles in both RNA replication and vesicle formation. The identification of BFA resistant mutants may facilitate the identification of cellular membrane-associated proteins necessary for induction of vesicle formation and RNA replication. Importantly, our data underscore the dramatic plasticity of the host-virus interactions required for successful viral replication.  相似文献   
786.
The archaeal community in a sulfide- and sulfur-rich spring with a stream water salinity of 0.7 to 1.0% in southwestern Oklahoma was studied by cloning and sequencing of 16S rRNA genes. Two clone libraries were constructed from sediments obtained at the hydrocarbon-exposed source of the spring and the microbial mats underlying the water flowing from the spring source. Analysis of 113 clones from the source library and 65 clones from the mat library revealed that the majority of clones belonged to the kingdom Euryarchaeota, while Crenarchaeota represented less than 10% of clones. Euryarchaeotal clones belonged to the orders Methanomicrobiales, Methanosarcinales, and Halobacteriales, as well as several previously described lineages with no pure-culture representatives. Those within the Halobacteriales represented 36% of the mat library and 4% of the source library. All cultivated members of this order are obligately aerobic halophiles. The majority of halobacterial clones encountered were not affiliated with any of the currently described genera of the family Halobacteriaceae. Measurement of the salinity at various locations at the spring, as well as along vertical gradients, revealed that soils adjacent to spring mats have a much higher salinity (NaCl concentrations as high as 32%) and a lower moisture content than the spring water, presumably due to evaporation. By use of a high-salt-plus-antibiotic medium, several halobacterial isolates were obtained from the microbial mats. Analysis of 16S rRNA genes indicated that all the isolates were members of the genus Haloferax. All isolates obtained grew at a wide range of salt concentrations, ranging from 6% to saturation, and all were able to reduce elemental sulfur to sulfide. We reason that the unexpected abundance of halophilic Archaea in such a low-salt, highly reduced environment could be explained by their relatively low salt requirement, which could be satisfied in specific locations of the shallow spring via evaporation, and their ability to grow under the prevalent anaerobic conditions in the spring, utilizing zero-valent sulfur compounds as electron acceptors. This study demonstrates that members of the Halobacteriales are not restricted to their typical high-salt habitats, and we propose a role for the Halobacteriales in sulfur reduction in natural ecosystems.  相似文献   
787.
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120 per thousand, and sulfate reduction was strongly inhibited at an in situ salinity of 215 per thousand. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180 per thousand or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120 per thousand.  相似文献   
788.
Expression and function of periostin-isoforms in bone   总被引:1,自引:0,他引:1  
Periostin was originally identified in MC3T3-E1 osteoblast-like cells. We have identified an isoform of periostin referred to as periostin-like-factor (PLF). It is homologous to other proteins such as fasciclin I (fas I), MPB70, betaIG-H3, and Algal-CAMs. All of these proteins are implicated in regulating cell adhesion. PLF and the other isoforms of periostin differ in their C-terminal sequences. PLF and periostin differ in two specific regions, between 673 and 699 amino acids (aa) and 785-812 aa. Periostin isoforms are expressed in vivo and in vitro during the stages of osteoblast differentiation and maturation. Their mRNAs are present in pre-osteoblast cells as detected by in situ hybridization, and the proteins are between 86 and 93 kD in size as determined by Western blot analysis. Antisense oligonucleotides and antibodies directed against the isoforms of periostin were used to block the activity of these proteins. In both cases, the levels of osteoblast-specific-differentiation markers were markedly reduced suggesting a role for these proteins in osteoblast differentiation.  相似文献   
789.
In a series of experiments the dynamics of the clonal structure of Y. pseudotuberculosis population was evaluated by cytopathogenicity in soil extract, as well as in associations with blue-green algae (cyanobacteria) and infusoria, under different temperature conditions. In all variants of experiments made at low environmental temperature (10 degrees C) a considerable part of Y. pseudotuberculosis clones (25-40%) was found to be cytopathogenic, while at 22 degrees C such clones were absent or had low cytopathogenicity. At the same time experiments made under the same temperature conditions (10 degrees C) showed the variability of the clonal structure of the bacterial population in different associations and sterile soil extract, as well as at different periods of the experiments. At low temperatures Y. pseudotuberculosis virulent (cytopathogenic) clones, in contrast to avirulent ones, were characterized by the presence of virulence plasmid p45, as well as high urease and catalase activity. The results of the experiments are discussed from the viewpoint of the clonal concept of bacterial populations and their pathogenicity.  相似文献   
790.
Role and regulation of starvation-induced autophagy in the Drosophila fat body   总被引:10,自引:0,他引:10  
In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号