首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   4篇
  24篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
Norepinephrine stimulated the rapid hydrolysis of [3H]phosphatidylinositol-4,5-bisphosphate in rat aorta with a maximal decrease of 30% within 60 sec of stimulation. Levels of [3H]phosphatidylinositol-4,5-bisphosphate returned to control by 5 min despite the continued presence of agonist. Hydrolysis of [3H]phosphatidylinositol-4,5-bisphosphate occurred concurrently with the formation of inositol phosphates. Inositol-tris and tetrakisphosphate levels were increased within 30 sec of agonist stimulation. Increases in inositol phosphate levels due to agonist were dose-dependent with half-maximal activation at 1 microM norepinephrine.  相似文献   
12.
It has been suggested that part of the increased beta-catecholamine responsiveness in hyperthyroid animals is due to a decrease in alpha-catecholamine action. The present results indicate that neither hyperthyroidism nor hypothyroidism altered the alpha 2-adrenergic inhibition of adenylate cyclase or the alpha 1-adrenergic stimulation of phosphatidylinositol turnover in adipocytes from the white adipose tissue of hamsters. No effect of hyperthyroidism was found on the Kd for binding of [3H]dihydroergocryptine or the number of binding sites in membranes prepared from hamster adipocyte tissue. The stimulation of cyclic AMP due to beta-catecholamines was enhanced in adipocytes from hyperthyroid hamsters, as was lipolysis. However, in adipocytes from hyperthyroid hamsters the maximal stimulation of cyclic AMP due to isoproterenol, ACTH or epinephrine plus yohimbine, as seen in the presence of adenosine deaminase and theophylline, was less than in adipocytes from euthyroid hamsters. The activation of adenylate cyclase by isoproterenol was the same in membranes from hyperthyroid as compared to those from euthyroid hamsters in the absence or presence of guanine nucleotides. These data suggest that thyroid status has little effect on alpha-catecholamine action by enhances the activation of lipolysis by beta-catecholamine agonists.  相似文献   
13.
Litosch I 《IUBMB life》2002,54(5):253-260
The receptor-regulated phospholipase C-beta (PLC-beta) signaling pathway is an important component in a network of signaling cascades that regulate cell function. PLC-beta signaling has been implicated in the regulation of cardiovascular function and neuronal plasticity. The Gq family of G proteins mediate receptor stimulation of PLC-beta activity at the plasma membrane. Mitogens stimulate the activity of a nuclear pool of PLC-beta. Stimulation of PLC-beta activity results in the rapid hydrolysis of phosphatidylinositol-4,5-bisphosphate, with production of inositol-1,4,5-trisphosphate and diacylglycerol, intracellular mediators that increase intracellular Ca2+ levels and activate protein kinase C activity, respectively. Diacylglycerol kinase converts diacylglycerol to phosphatidic acid, a newly emerging intracellular mediator of hormone action that targets a number of signaling proteins. Activation of the Gq linked PLC-beta signaling pathway can also generate additional signaling lipids, including phosphatidylinositol-3-phosphate and phosphatidylinositol-3,4,5-trisphosphate, which regulate the activity and/or localization of a number of proteins. Novel feedback mechanisms, directed at the level of Gq and PLC-beta, have been identified. PLC-beta and regulators of G protein signaling (RGS) function as GTPase-activating proteins on Gq to control the amplitude and duration of stimulation. Protein kinases phosphorylate and regulate the activation of specific PLC-beta isoforms. Phosphatidic acid regulates PLC-beta1 activity and stimulation of PLC-beta1 activity by G proteins. These feedback mechanisms coordinate receptor signaling and cell activation. Feedback mechanisms constitute possible targets for pharmacological intervention in the treatment of disease.  相似文献   
14.
GTP-binding proteins have been implicated to function as key transducing elements in the mechanism underlying receptor activation of a membrane-associated phospholipase C activity. In the present study, the regulation of phospholipase C activity by GTP-binding proteins has been characterized in a detergent-solubilized system derived from bovine brain membranes. Guanosine-5'-(3-O-thio)triphosphate (GTP-gamma-S) and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) stimulated a dose-dependent increase in phospholipase C activity with half-maximal activation at 0.6 microM and 10 microM, respectively. The maximal degree of stimulation due to Gpp(NH)p or GTP-gamma-S was comparable. 100 microM GTP had only a slight stimulatory effect on phospholipase C activity. Adenine nucleotides, 100 microM adenylyl-imidodiphosphate and ATP, did not stimulate phospholipase C activity, indicating that specific guanine nucleotide-dependent regulation of phospholipase C activity was preserved in the solubilized state. Gpp(NH)p or GTP-gamma-S stimulation of phospholipase C activity was time-dependent and required Mg2+.Mg2+ regulated the time course for activation of phospholipase C by guanine nucleotides and the ability of guanine nucleotides to promote an increase in the Ca2+ sensitivity of phospholipase C. 200 microM GDP-beta-S or 5 mM EDTA rapidly reversed the activation due to GTP-gamma-S or Gpp(NH)p. These findings demonstrate that G protein regulation of phospholipase C activity in a bovine brain membrane- solubilized system occurs through a Mg2+ and time-dependent mechanism. Activation is readily reversible upon addition of excess GDP-beta-S or removal of Mg2+.  相似文献   
15.
Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-β1 (PLC-β1) and potentiates stimulation of PLC-β1 activity by Gαq in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944–957, lying within the PLC-β1 C-terminus αA helix and flexible loop of the Gαq binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Gαq or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr952 and Ile955 as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr952 and Ile955, PLC-β1 (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-β1 in vitro. COS 7 cells co-transfected with PLC-β1 (Y952G/I955G) demonstrate a 10-fold increase in the EC50 for stimulation and a 60% decrease in maximum stimulation by carbachol via Gαq linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-β1 but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-β1 and PLC-β1(Y952G/I955G) activity is increased comparably by co-transfection with Gαq and neither is markedly affected by co-transfection with Gβ1γ2. Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC50 for agonist stimulation of WT-PLC-β1 by 10-fold, producing a phenotype similar to PLC-β1 (Y952G/I955G) with respect to agonist potency. 1-Butanol is without effect on carbachol stimulated PLC activity in cells co-transfected with either PLC-β1(Y952G/I955G) or on endogenous PLC activity, indicating that regulation by PA requires direct interaction with the PLC-β1 PA-binding region. These data show that endogenous PA regulates signal output by Gαq-linked GPCRs in transfected cells directly through PLC-β1. Gαq and PA may co-ordinate to regulate signaling. Regulation by PA may constitute part of a mechanism that routes receptor signaling to specific PLC isoforms.  相似文献   
16.
The combination of 1.6 microM 4 beta phorbol, 12 beta myristate, 13 alpha acetate (PMA) and 1 microM A23187 produced a five-fold greater stimulation of rat hepatocyte glycogen phosphorylase activity than was seen with PMA alone. Vasopressin activation of glycogen phosphorylase was comparable to that seen with PMA plus A23187. Glycogen phosphorylase activity due to PMA plus A23187 was increased significantly after 30 sec, maximal at 120 and sustained at elevated levels for 240 sec. In contrast, activation due to vasopressin was maximal at 30 sec followed by a decrease. The addition of PMA 5 min prior to the A23187 abolished the synergism between these two agents. These data are compatible with the hypothesis that diacylglycerol and Ca2+ synergistically increase glycogen phosphorylase activity in rat hepatocytes.  相似文献   
17.
It has been suggested that part of the increased β-catecholamine responsiveness in hyperthyroid animals is due to a decrease in α-catecholamine action. The present results indicate that neither hyperthyroidism nor hypothyroidism altered the α2-adrenergic inhibition of adenylate cyclase or the α1-adrenergic stimulation of phosphatidylinositol turnover in adipocytes from the white adipose tissue of hamster. No effect of hyperthyroidism was found on the Kd of [3H]dihydroegocryptine or the number of binding sites in membranes prepared from hamster adipocyte tissue. The stimulation of cyclic AMP due to β-catecholamines was enhanced in adipocytes from hyperthyroid hamster, as was lipolysis. However, in adipocytes from hyperthyroid hamster the maximal stimulation of cyclic AMP due to isoproterenol, ACTH or epinephrine plus yohimbine, as seen in the presence of adenosine deaminase and theophylline, was less than in adipocytes from euthyroid hamsters. The activation of adenylate cyclase by isoproterenol was the same in membranes from hyperthyroid as compared to those from euthyroid hamsters in the absence or presence of guanine nucleotides. These data suggest that thyroid status has little effect on α-catecholamine action but enhances the activation of lipolysis by β-catecholamine agonists.  相似文献   
18.
Phosphoinositide breakdown has been linked to the receptor mechanism involved in the elevation of cytosolic Ca2+. In a cell-free system prepared from [3H] inositol-labeled blowfly salivary glands, 5-hydroxytryptamine stimulated the rapid production of inositol phosphates. Within 30 s of hormone addition, there was a 100% increase in inositol trisphosphate formation, a 70% increase in inositol bisphosphate formation, and a 90% increase in inositol monophosphate formation as compared to control homogenates incubated for the same length of time. 5-Hydroxytryptamine did not stimulate inositol or glycerol phosphoinositol formation. Half-maximal activation of inositol phosphate production was obtained with 0.33 microM 5-hydroxytryptamine. Ethylene glycol bis(beta-aminoethyl ether)-N',N',N',N'-tetraacetic acid, (EGTA) (0.3 mM) inhibited the basal formation of inositol phosphates and decreased the net accumulation of inositol bisphosphate and inositol trisphosphate due to hormone as compared to homogenates incubated in the absence of added Ca2+. EGTA, however, had little effect on the per cent stimulation of inositol phosphate production due to hormone. In homogenates, ATP, GTP or guanyl-5'-yl imidodiphosphate (Gpp(NH)p) was required for a hormone effect. Gpp(NH)p, unlike ATP or GTP, increased the basal formation of inositol phosphates. In membranes, GTP, Gpp(NH)p, or guanosine 5'-(3-O-thio)trisphosphate (GTP gamma S) sustained a hormone effect whereas ATP was ineffective. GTP did not affect production while Gpp(NH)p and GTP gamma S increased inositol phosphate production. Half-maximal effects of Gpp(NH)p and GTP gamma S on hormone-stimulated inositol phosphate formation occurred at 10 microM and 100 nM, respectively. In the presence of 1 microM GTP gamma S, 5-methyltryptamine stimulated inositol phosphate formation within 2 s in membranes. These results indicate that in a cell-free system, GTP is involved in mediating the effects of Ca2+-mobilizing hormones on phosphoinositide breakdown.  相似文献   
19.
5-Methyltryptamine, through a GTP-dependent mechanism, stimulated breakdown of endogenous [3H]inositol-labeled phosphoinositides in membranes prepared from blowfly salivary gland homogenates through a phospholipase C exhibiting a pH optimum of approximately 7.0. Unlabeled membranes, prepared from salivary gland homogenates, hydrolyzed exogenous [3H]phosphatidylinositol 4,5-bisphosphate substrate with generation of labeled inositol phosphates. Inositol trisphosphate formation was increased approximately 200% by 10 microM guanosine 5'-(O-thio)-trisphosphate (GTP gamma S) within 30 s. 5-Methyltryptamine, in the presence of 10 microM GTP gamma S, increased the rate of inositol trisphosphate formation by approximately 500% within 30 s. Half-maximal activation of hormone-stimulated breakdown of exogenous substrate required approximately 0.05 microM GTP gamma S. [3H]Phosphatidylinositol was also hydrolyzed during incubation with membranes, resulting in the generation of inositol, glycerol phosphoinositol, and inositol monophosphate. Formation of inositol monophosphate was stimulated approximately 30% by 10 microM GTP gamma S and 10 microM 5-methyltryptamine. Neither inositol nor glycerol phosphoinositol formation was affected by hormone. These results indicate that in a cell-free system from blowfly salivary glands, 5-methyltryptamine, through a GTP-dependent mechanism, directly activates a phospholipase C which mediates phosphoinositide hydrolysis.  相似文献   
20.
Blowfly salivary glands, previously exposed to 10 microM-5-hydroxytryptamine for 30 min, demonstrated a rapid compensatory resynthesis of [3H]inositol-labelled phosphatidylinositol 4,5-bisphosphate when allowed to recover in medium containing 3-5 microM-inositol. Phosphatidylinositol 4,5-bisphosphate comprised 70% of the total [3H]-phosphoinositide, and there was a corresponding decrease in the formation of [3H]-phosphatidylinositol. Subsequent addition of 5-hydroxytryptamine produced an equivalent breakdown of the newly synthesized phosphoinositides but little 45Ca2+ gating. Increasing the inositol concentration in the medium to 300 microM produced a 14-fold stimulation of phosphatidylinositol synthesis but only a 5-fold increase in phosphatidylinositol 4,5-bisphosphate synthesis. Increasing the inositol concentration in the medium from 3 microM to 300 microM resulted in a progressively greater recovery of the 45Ca2+-gating response. At 300 microM-inositol there was an 85% recovery of 45Ca2+-gating response. These results indicate that conversion of phosphatidylinositol into phosphatidylinositol 4,5-bisphosphate occurs in blowfly salivary glands and is secondary to an initial breakdown of the phosphoinositides. Recovery of Ca2+ gating is dependent on the restoration of both phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate to appropriate concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号