首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   20篇
  149篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   13篇
  2011年   12篇
  2010年   5篇
  2009年   1篇
  2008年   10篇
  2007年   6篇
  2006年   9篇
  2005年   8篇
  2004年   12篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1991年   2篇
  1988年   2篇
  1903年   2篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
31.
Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an essential component of the protein insertion machinery, and we show that members of the Omp85 protein family are also found in eukaryotes ranging from plants to humans. In eukaryotes, Omp85 is present in the mitochondrial outer membrane. The gene encoding Omp85 is essential for cell viability in yeast, and conditional omp85 mutants have defects that arise from compromised insertion of integral proteins like voltage-dependent anion channel (VDAC) and components of the translocase in the outer membrane of mitochondria (TOM) complex into the mitochondrial outer membrane.  相似文献   
32.
33.
The β-barrel assembly machine (BAM) complex is an essential feature of all bacteria with an outer membrane. The core subunit of the BAM complex is BamA and, in Escherichia coli, four lipoprotein subunits: BamB, BamC, BamD and BamE, also function in the BAM complex. Hidden Markov model analysis was used to comprehensively assess the distribution of subunits of the BAM lipoproteins across all subclasses of proteobacteria. A patchwork distribution was detected which is readily reconciled with the evolution of the α-, β-, γ-, δ- and ε-proteobacteria. Our findings lead to a proposal that the ancestral BAM complex was composed of two subunits: BamA and BamD, and that BamB, BamC and BamE evolved later in a distinct sequence of events. Furthermore, in some lineages novel lipoproteins have evolved instead of the lipoproteins found in E. coli. As an example of this concept, we show that no known species of α-proteobacteria has a homologue of BamC. However, purification of the BAM complex from the model α-proteobacterium Caulobacter crescentus identified a novel subunit we refer to as BamF, which has a conserved sequence motif related to sequences found in BamC. BamF and BamD can be eluted from the BAM complex under similar conditions, mirroring the BamC:D module seen in the BAM complex of γ-proteobacteria such as E. coli.  相似文献   
34.
The apicomplexan parasite Cryptosporidium parvum possesses a mitosome, a relict mitochondrion with a greatly reduced metabolic capability. This mitosome houses a mitochondrial-type protein import apparatus, but elements of the protein import pathway have been reduced, and even lost, through evolution. The small Tim protein family is a case in point. The genomes of C. parvum and related species of Cryptosporidium each encode just one small Tim protein, CpTimS. This observation challenged the tenet that small Tim proteins are always found in pairs as α3β3 hexamers. We show that the atypical CpTimS exists as a relatively unstable homohexamer, shedding light both on the early evolution of the small Tim protein family and on small Tim hexamer formation in contemporary eukaryotes.  相似文献   
35.
36.
Translocation of precursor proteins across the mitochondrial membranes requires the coordinated action of multisubunit translocases in the outer and inner membrane, and the driving force for translocation across the inner membrane is provided by the matrix-located heat shock protein 70 (mtHsp70). The central components of the protein import machinery are essential. Here we describe Zim17, an essential protein with a zinc finger motif involved in protein import into mitochondria. Comparative genomics suggested a correction to the open reading frame of YNL310c, the gene encoding Zim17 in Saccharomyces cerevisiae. The revised open reading frame codes for a classic mitochondrial targeting signal, which is processed from Zim17 in the mitochondrial matrix. Loss of Zim17 selectively diminishes import of proteins into the matrix of mitochondria, but this loss of Zim17 is partially suppressed by overexpression of the J-protein Pam18/Tim14. We propose that Zim17 functions as an example of a "fractured" J-protein, where a protein like Zim17 contributes a zinc finger domain to Type III J-proteins, in toto providing for substrate loading onto Hsp70.  相似文献   
37.
Mitochondria evolved from an endosymbiotic proteobacterium in a process that required the transfer of genes from the bacterium to the host cell nucleus, and the translocation of proteins thereby made in the host cell cytosol into the internal compartments of the organelle. According to current models for this evolution, two highly improbable events are required to occur simultaneously: creation of a protein translocation machinery to import proteins back into the endosymbiont and creation of targeting sequences on the protein substrates themselves. Using a combination of two independent prediction methods, validated through tests on simulated genomes, we show that at least 5% of proteins encoded by an extant proteobacterium are predisposed for targeting to mitochondria, and propose we that mitochondrial targeting information was preexisting for many proteins of the endosymbiont. We analyzed a family of proteins whose members exist both in bacteria and in mitochondria of eukaryotes and show that the amino-terminal extensions occasionally found in bacterial family members can function as a crude import sequence when the protein is presented to isolated mitochondria. This activity leaves the development of a primitive translocation channel in the outer membrane of the endosymbiont as a single hurdle to initiating the evolution of mitochondria.  相似文献   
38.
Tail-anchored proteins have an NH(2)-terminal cytosolic domain anchored to intracellular membranes by a single, COOH-terminal, transmembrane segment. Sequence analysis identified 55 tail-anchored proteins in Saccharomyces cerevisiae, with several novel proteins, including Prm3, which we find is required for karyogamy and is tail-anchored in the nuclear envelope. A total of six tail-anchored proteins are present in the mitochondrial outer membrane and have relatively hydrophilic transmembrane segments that serve as targeting signals. The rest, by far the majority, localize via a bipartite system of signals: uniformly hydrophobic tail anchors are first inserted into the endoplasmic reticulum, and additional segments within the cytosolic domain of each protein can dictate subsequent sorting to a precise destination within the cell.  相似文献   
39.
Prosurvival Bcl-2-like proteins, like Bcl-w, are thought to function on organelles such as the mitochondrion and to be targeted to them by their hydrophobic COOH-terminal domain. We unexpectedly found, however, that the membrane association of Bcl-w was enhanced during apoptosis. In healthy cells, Bcl-w was loosely attached to the mitochondrial membrane, but it was converted into an integral membrane protein by cytotoxic signals that induce binding of BH3-only proteins, such as Bim, or by the addition of BH3 peptides to lysates. As the structure of Bcl-w has revealed that its COOH-terminal domain occupies the hydrophobic groove where BH3 ligands bind, displacement of that domain by a BH3 ligand would displace the hydrophobic COOH-terminal residues, allowing their insertion into the membrane. To determine whether BH3 ligation is sufficient to induce the enhanced membrane affinity, or to render Bcl-w proapoptotic, we mimicked their complex by tethering the Bim BH3 domain to the NH2 terminus of Bcl-w. The chimera indeed bound avidly to membranes, in a fashion requiring the COOH-terminal domain, but neither promoted nor inhibited apoptosis. These results suggest that ligation of a proapoptotic BH3-only protein alters the conformation of Bcl-w, enhances membrane association, and neutralizes its survival function.  相似文献   
40.
Allen R  Egan B  Gabriel K  Beilharz T  Lithgow T 《FEBS letters》2002,514(2-3):347-350
The TOM translocase consists of several integral membrane proteins organised around the channel forming protein Tom40. Here we show that one of these protein subunits, Tom7, is a tail-anchored protein. The carboxy-terminal 33 amino acids of Tom7 contain the information for targeting the protein to the mitochondrial outer membrane, and a conserved proline residue within the transmembrane segment is required for efficient targeting of Tom7 to the outer membrane. An equivalent proline residue is important in targeting each of the other three tail-anchored proteins that associate with Tom40 to form the core of the TOM translocase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号