排序方式: 共有48条查询结果,搜索用时 62 毫秒
21.
Urzica EI Adler LN Page MD Linster CL Arbing MA Casero D Pellegrini M Merchant SS Clarke SG 《The Journal of biological chemistry》2012,287(17):14234-14245
The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L-galactose phosphorylases converting GDP-L-galactose to L-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of L-ascorbate. Here we report that the L-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the L-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-L-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and L-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the L-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. 相似文献
22.
Here we report the effect of a partially purified alkaloid fraction (NUP) of Nuphar lutea on nuclear factor kappa B (NF-κB) expression and studied its mechanism of toxicity against Leishmania major in C3H mice peritoneal macrophages. NUP was found to be a mixture of thermo-stable dimeric sesquiterpene thioalkaloids containing mainly thionupharidines. The anti-leishmanial activity was shown to be mediated through the activation of NF-κB and increased iNOS production. Additionally, the nitric oxide inhibitor, NG-monomethyl-l-arginine (0.5 mM) totally reverted the anti-leishmanial effect of NUP (0.25 and 0.5 μg/ml). NUP was also shown to act as an anti-oxidant, almost completely inhibiting the macrophage respiratory burst activity. However, no elevated lysozyme (EC3.2.1.17) or β-galactosidase (EC3.2.1.23) activities were demonstrated in macrophages treated with NUP. This study suggests, that the activity of NUP is mediated by NF-κB activation and the production of nitric oxide which is dependent on the l-arginine:NO pathway. 相似文献
23.
Lital Ozeri Rael Horwitz Jamie Kneitel Eyal Rahav Leon Blaustein 《Ecological Entomology》2020,45(3):476-484
1. Fire retardants are composed of fertilising salts that are commonly used for fighting wildfires. These chemicals have various effects on individual arthropod species and aquatic communities. 2. This study investigated the effects of four treatments of a prevalent fire retardant [FR CROS 134 (FR), applied at concentrations of 0, 3.8 × 102, 7.6 × 102 and 11.4 × 102 mg litre−1] on oviposition habitat selection (OHS) by Culiseta longiareolata and Culex laticinctus mosquitoes in an outdoor mesocosm. Additionally, larval development of C. longiareolata was examined in response to this fire retardant. 3. The results demonstrate that OHS increased in both species, whereas survivorship (0–86.7%) and time to metamorphosis (5.4–23.1 days) of C. longiareolata were not affected by any of the treatments. However, cyanobacterial biomass increased and heterotrophic bacteria decreased in response to the addition of FR. 4. It was found that FR applications can have unintended consequences which can increase OHS by female mosquitoes. The growing use of fire retardants worldwide, and especially in Israel, justify evidence-based assessment and environmental management of their use. This study is a first critical step in filling the knowledge gap with respect to the impact of FR on aquatic ecosystems. 相似文献
24.
Using a commercial protein expression system, we sought the crucial elements and conditions for the expression of proteins with genetically encoded unnatural amino acids. By identifying the most important translational components, we were able to increase suppression efficiency to 55% and to increase mutant protein yields to levels higher than achieved with wild type expression (120%), reaching over 500 µg/mL of translated protein (comprising 25 µg in 50 µL of reaction mixture). To our knowledge, these results are the highest obtained for both in vivo and in vitro systems. We also demonstrated that efficiency of nonsense suppression depends greatly on the nucleotide following the stop codon. Insights gained in this thorough analysis could prove useful for augmenting in vivo expression levels as well. 相似文献
25.
Lital Rachmany David Tweedie Vardit Rubovitch Qian-Sheng Yu Yazhou Li Jia-Yi Wang Chaim G. Pick Nigel H. Greig 《PloS one》2013,8(11)
With parallels to concussive mild traumatic brain injury (mTBI) occurring in humans, anesthetized mice subjected to a single 30 g weight drop mTBI event to the right parietal cortex exhibited significant diffuse neuronal degeneration that was accompanied by delayed impairments in recognition and spatial memory. To elucidate the involvement of reversible p53-dependent apoptosis in this neuronal loss and associated cognitive deficits, mice were subjected to experimental mTBI followed by the systemic administration of the tetrahydrobenzothiazole p53 inactivator, PFT-α, or vehicle. Neuronal loss was quantified immunohistochemically at 72 hr. post-injury by the use of fluoro-Jade B and NeuN within the dentate gyrus on both sides of the brain, and recognition and spatial memory were assessed by novel object recognition and Y-maze paradigms at 7 and 30 days post injury. Systemic administration of a single dose of PFT-α 1 hr. post-injury significantly ameliorated both neuronal cell death and cognitive impairments, which were no different from sham control animals. Cellular studies on human SH-SY5Y cells and rat primary neurons challenged with glutamate excitotoxicity and H2O2 induced oxidative stress, confirmed the ability of PFT-α and a close analog to protect against these TBI associated mechanisms mediating neuronal loss. These studies suggest that p53-dependent apoptotic mechanisms underpin the neuronal and cognitive losses accompanying mTBI, and that these are potentially reversible by p53 inactivation. 相似文献
26.
Linster CL Adler LN Webb K Christensen KC Brenner C Clarke SG 《The Journal of biological chemistry》2008,283(27):18483-18492
The Arabidopsis thaliana VTC2 gene encodes an enzyme that catalyzes the conversion of GDP-L-galactose to L-galactose 1-phosphate in the first committed step of the Smirnoff-Wheeler pathway to plant vitamin C synthesis. Mutations in VTC2 had previously been found to lead to only partial vitamin C deficiency. Here we show that the Arabidopsis gene At5g55120 encodes an enzyme with high sequence identity to VTC2. Designated VTC5, this enzyme displays substrate specificity and enzymatic properties that are remarkably similar to those of VTC2, suggesting that it may be responsible for residual vitamin C synthesis in vtc2 mutants. The exact nature of the reaction catalyzed by VTC2/VTC5 is controversial because of reports that kiwifruit and Arabidopsis VTC2 utilize hexose 1-phosphates as phosphorolytic acceptor substrates. Using liquid chromatography-mass spectroscopy and a VTC2-H238N mutant, we provide evidence that the reaction proceeds through a covalent guanylylated histidine residue within the histidine triad motif. Moreover, we show that both the Arabidopsis VTC2 and VTC5 enzymes catalyze simple phosphorolysis of the guanylylated enzyme, forming GDP and L-galactose 1-phosphate from GDP-L-galactose and phosphate, with poor reactivity of hexose 1-phosphates as phosphorolytic acceptors. Indeed, the endogenous activities from Japanese mustard spinach, lemon, and spinach have the same substrate requirements. These results show that Arabidopsis VTC2 and VTC5 proteins and their homologs in other plants are enzymes that guanylylate a conserved active site His residue with GDP-L-galactose, forming L-galactose 1-phosphate for vitamin C synthesis, and regenerate the enzyme with phosphate to form GDP. 相似文献
27.
The refusal of children or their parents to consent to treatment that professionals regard as essential always results in a dilemma. Responding to such refusals demands careful and sensitive clinical and thicolegal intervention and close cooperation among professionals, in particular doctors and social workers. Since the introduction of the Children Act 1989 the number of cases in which children have withheld consent to lifesaving treatment has risen, and it is now increasingly recognised that children have a right to have their views legally represented if a local authority or health authority seeks a court''s leave to carry out treatment. Professionals have to consider which legal route, under either the Children Act or the Mental Health Act, is likely to be best for the individual child. 相似文献
28.
29.
Lital Davidi Eyal Shimoni Inna Khozin-Goldberg Ada Zamir Uri Pick 《Plant physiology》2014,164(4):2139-2156
The halotolerant microalgae Dunaliella bardawil accumulates under nitrogen deprivation two types of lipid droplets: plastoglobuli rich in β-carotene (βC-plastoglobuli) and cytoplasmatic lipid droplets (CLDs). We describe the isolation, composition, and origin of these lipid droplets. Plastoglobuli contain β-carotene, phytoene, and galactolipids missing in CLDs. The two preparations contain different lipid-associated proteins: major lipid droplet protein in CLD and the Prorich carotene globule protein in βC-plastoglobuli. The compositions of triglyceride (TAG) molecular species, total fatty acids, and sn-1+3 and sn-2 positions in the two lipid pools are similar, except for a small increase in palmitic acid in plastoglobuli, suggesting a common origin. The formation of CLD TAG precedes that of βC-plastoglobuli, reaching a maximum after 48 h of nitrogen deprivation and then decreasing. Palmitic acid incorporation kinetics indicated that, at early stages of nitrogen deprivation, CLD TAG is synthesized mostly from newly formed fatty acids, whereas in βC-plastoglobuli, a large part of TAG is produced from fatty acids of preformed membrane lipids. Electron microscopic analyses revealed that CLDs adhere to chloroplast envelope membranes concomitant with appearance of small βC-plastoglobuli within the chloroplast. Based on these results, we propose that CLDs in D. bardawil are produced in the endoplasmatic reticulum, whereas βC-plastoglobuli are made, in part, from hydrolysis of chloroplast membrane lipids and in part, by a continual transfer of TAG or fatty acids derived from CLD.Eukaryotic cells accumulate neutral lipids in different tissues mainly in the form of lipid droplets (Murphy, 2012). Most lipid droplets consist of a core of triglycerides (TAGs) and/or sterol esters coated by a phospholipids monolayer and embedded with proteins (Zweytick et al., 2000). Plants accumulate TAGs in different tissues, primarily in seeds but also in fruit, such as palm oil, flowers, and leaves. The best characterized system for TAG metabolism is oil seeds, in which TAG serves as the major carbon and energy reservoir to be used during germination (Huang, 1992, 1996). Recent studies show that lipid droplets are not just static pools of lipids but have diverse metabolic functions (Farese and Walther, 2009). In addition, plants also contain plastoglobuli, small chloroplastic lipid droplets consisting primarily of storage lipids and pigments. Proteome analyses of plastoglobuli suggest that they are involved in synthesis and degradation of lipids, pigments, and coenzymes (Ytterberg et al., 2006; Lundquist et al., 2012). It has been shown that plant plastoglobuli are associated with thylakoid membranes (Austin et al., 2006; Ytterberg et al., 2006).It is not entirely clear where the TAGs are synthesized in the plant cell. Until recently, it has been assumed that most TAGs are made in the endoplasmatic reticulum (ER) from fatty acids, which are mostly synthesized in the chloroplast and imported to the cytoplasm (Joyard et al., 2010). However, the recent identification of the enzyme diacylglycerol acyl transferase in plant plastoglobuli (Lundquist et al., 2012) suggests that TAG may be synthesized directly in chloroplasts, although direct evidence is missing. TAG may be synthesized also from galactolipid fatty acids during stress or senescence by phytyl ester synthases, which catalyze acyl transesterification from galactolipids to TAGs (Lippold et al., 2012). Phosphatidyl choline (PC) plays a major role in acyl transfer of newly synthesized fatty acids from the chloroplast into TAGs at the ER in plants (Bates et al., 2009). An indication for the origin of glycerolipids in plants is the identity of the fatty acids at the sn-2 position: if it originates in the chloroplast, it is mostly C16:0, whereas if it was made in the ER, it is mostly C:18 (Heinz and Roughan, 1983).Many species of unicellular microalgae can accumulate large amounts of TAGs under growth-limiting conditions, such as nitrogen deprivation (Shifrin and Chisholm, 1981; Roessler, 1990; Avron and Ben-Amotz, 1992; Thompson, 1996). In green microalgae (Chlorophyceae), TAGs are usually synthesized and accumulated in cytoplasmatic lipid droplets (CLDs; Murphy, 2012), although in some cases, such as in Chlamydomonas reinhardtii starchless mutants, they also accumulate in chloroplasts (Fan et al., 2011; Goodson et al., 2011). Recent studies indicate that the CLDs are closely associated with ER membranes and possibly, chloroplast envelope membranes as well (Goodson et al., 2011; Peled et al., 2012).Green microalgae also contain two distinct types of chloroplastic lipid droplets. The first type is plastoglobuli, similar in morphology to higher plants plastoglobuli (Bréhélin et al., 2007; Kessler and Vidi, 2007). The second type is the eyespot (stigma), part of the visual system in microalgae. The eyespot is composed of a cluster of β-carotene-containing lipid droplets organized in several layers between grana membranes in the chloroplast (Häder and Lebert, 2009; Kreimer, 2009). Recent proteomic analysis of algal eyespot proteins revealed that they contain diverse structural proteins, lipid and carotenoid metabolizing enzymes, transporters, and signal transduction components (Schmidt et al., 2006).The origin of TAG in microalgae is still not clear. In C. reinhardtii, it was found that the major fatty acids in the sn-2 position are 16:0, which according to the plant dogma, is made in the chloroplast (Fan et al., 2011). In C. reinhardtii, which lacks PC, monogalactosyldiacylglycerol (MGDG) was proposed to replace PC in the mobilization of fatty acids from plastidal galactoglycerolipids into TAG based on mutation of a galactoglycerolipid lipase (Li et al., 2012). Based on these results and others, it has been proposed that, in C. reinhardtii, triglycerides are primarily produced in the chloroplast or combined with ER (Li et al., 2012; Liu and Benning, 2013).Plants and algae lipid droplets contain structural major proteins localized at the lipid droplet periphery, and their major function seems to be stabilization and prevention of fusion (Huang, 1992, 1996; Katz et al., 1995; Frandsen et al., 2001; Liu et al., 2009). In plant seed oils, the major classes of lipid droplet proteins are oleosins and caleosins, which have a characteristic hydrophobic loop with a conserved three Pro domain (Hsieh and Huang, 2004; Capuano et al., 2007; Purkrtova et al., 2008; Tzen, 2012). Oleosin and caleosin analogs were also recently identified in some green microalgal species (Lin et al., 2012; Vieler et al., 2012; Huang et al., 2013). However, the most abundant lipid droplets proteins in green algae (Chloropyceae) are a new family of major lipid droplet proteins (MLDPs) structurally distinct from plant oleosins and caleosins (Moellering and Benning, 2010; Peled et al., 2011; Davidi et al., 2012). Plastoglobules have different major lipid-associated proteins termed plastoglobules-associated protein-fibrillins, which form a distinct protein family with no sequence or structural similarities to oleosins (Kim and Huang, 2003). We have previously identified in the plastoglobuli rich in β-carotene (βC-plastoglobuli) a lipid-associated protein termed carotene globule protein (CGP), whose degradation destabilized the lipid droplets (Katz et al., 1995). The proteome of C. reinhardtii lipid droplet indicates that algal CLDs also contain several enzymes, suggesting that they are involved in lipid metabolism (Nguyen et al., 2011).The halotolerant green algae Dunaliella bardawil and Dunaliella salina ‘Teodoresco’ are unique in that they accumulate under high light stress or nitrogen deprivation large amounts of plastidic lipid droplets (βC-plastoglobuli), which consist of TAG and two isomers of β-carotene, all trans and 9-cis (Ben-Amotz et al., 1982, 1988). D. bardawil also accumulates CLD under the same stress conditions, similar to other green algae (Davidi et al., 2012). It has been shown that the function of βC-plastoglobuli is to protect the photosynthetic system against photoinhibition (Ben-Amotz et al., 1989). The enzymatic pathway for β-carotene synthesis in D. bardawil and D. salina has been partly identified, but the subcellular localization of β-carotene biosynthesis is not known (Jin and Polle, 2009). The synthesis of β-carotene depends on TAG biosynthesis (Rabbani et al., 1998); however, the origin of βC-plastoglobuli is not known. Are they formed within the chloroplast, or are they made in the cytoplasm? Is the TAG in βC-plastoglobuli and CLD identical or different, and where is it formed?D. bardawil is an excellent model organism for isolation of lipid droplet for several reasons. First, D. bardawil contains large amounts of both CLD and βC-plastoglobuli (Ben-Amotz et al., 1982; Fried et al., 1982), making it possible to obtain sufficient amounts of proteins and lipids from the two types of lipid pools for detailed analyses. Second, Dunaliella do not have a rigid cell wall and can be lysed by a gentle osmotic shock, which does not rupture the chloroplast. Therefore, it is possible to sequentially release pure CLD and βC-plastoglobuli by a two-step lysis (Katz et al., 1995). Third, D. bardawil seems to lack the eyespot structure, which can be clearly observed in other Dunaliella spp. even in a light microscope or by electron microscopy, but has never been observed in D. bardawil by us. It avoids the risk of cross contamination of βC-plastoglobuli with eyespot proteins. Fourth, the availability of protein markers for the major lipid droplet-associated proteins, CGPs and MLDPs, enabled both good immunolocalization and careful monitoring of the purity of the preparations by western analysis.In this work, we describe the purification, lipid compositions, and protein profiles of two lipid pools from D. bardawil: CLD and plastidic βC-plastoglobuli. A detailed proteomic analysis of these lipid droplets will be described in another work. Combined with detailed electron microscopy studies, these results led to surprising conclusions regarding the origin of the plastidic βC-plastoglobuli. 相似文献
30.
Adler LN Gomez TA Clarke SG Linster CL 《The Journal of biological chemistry》2011,286(24):21511-21523
The plant VTC2 gene encodes GDP-L-galactose phosphorylase, a rate-limiting enzyme in plant vitamin C biosynthesis. Genes encoding apparent orthologs of VTC2 exist in both mammals, which produce vitamin C by a distinct metabolic pathway, and in the nematode worm Caenorhabditis elegans where vitamin C biosynthesis has not been demonstrated. We have now expressed cDNAs of the human and worm VTC2 homolog genes (C15orf58 and C10F3.4, respectively) and found that the purified proteins also display GDP-hexose phosphorylase activity. However, as opposed to the plant enzyme, the major reaction catalyzed by these enzymes is the phosphorolysis of GDP-D-glucose to GDP and D-glucose 1-phosphate. We detected activities with similar substrate specificity in worm and mouse tissue extracts. The highest expression of GDP-D-glucose phosphorylase was found in the nervous and male reproductive systems. A C. elegans C10F3.4 deletion strain was found to totally lack GDP-D-glucose phosphorylase activity; this activity was also found to be decreased in human HEK293T cells transfected with siRNAs against the human C15orf58 gene. These observations confirm the identification of the worm C10F3.4 and the human C15orf58 gene expression products as the GDP-D-glucose phosphorylases of these organisms. Significantly, we found an accumulation of GDP-D-glucose in the C10F3.4 mutant worms, suggesting that the GDP-D-glucose phosphorylase may function to remove GDP-D-glucose formed by GDP-D-mannose pyrophosphorylase, an enzyme that has previously been shown to lack specificity for its physiological D-mannose 1-phosphate substrate. We propose that such removal may prevent the misincorporation of glucosyl residues for mannosyl residues into the glycoconjugates of worms and mammals. 相似文献