首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   32篇
  2021年   3篇
  2018年   4篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   16篇
  2012年   10篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   7篇
  2006年   13篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   10篇
  1988年   12篇
  1987年   3篇
  1986年   4篇
  1984年   3篇
  1983年   11篇
  1981年   4篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1969年   3篇
  1968年   3篇
  1965年   2篇
  1955年   2篇
  1909年   2篇
  1908年   3篇
  1900年   2篇
  1890年   2篇
排序方式: 共有332条查询结果,搜索用时 31 毫秒
31.
The impact of Quaternary Ice Ages on mammalian evolution   总被引:3,自引:0,他引:3  
The Quaternary was a time of extensive evolution among mammals. Most living species arose at this time, and many of them show adaptations to peculiarly Quaternary environments. The latter include continental northern steppe and tundra, and the formation of lakes and offshore islands. Although some species evolved fixed adaptations to specialist habitats, others developed flexible adaptations enabling them to inhabit broad niches and to survive major environmental changes. Adaptation to short-term (migratory and seasonal) habitat change probably played a part in pre-adapting mammal species to the longer-term cyclical changes of the Quaternary. Fossil evidence indicates that environmental changes of the order of thousands of years have been sufficient to produce subspeciation, but speciation has typically required one hundred thousand to a few hundred thousand years, although there are both shorter and longer exceptions. The persistence of taxa in environments imposing strong selective regimes may have been important in forcing major adaptive change. Individual Milankovitch cycles are not necessarily implicated in this process, but nor did they generally inhibit evolutionary change among mammals: many evolutionary divergences built over multiple climatic cycles. Deduction of speciation timing requires input from fossils and modern phenotypic and breeding data, to complement and constrain mitochondrial DNA coalescence dates which appear commonly to overestimate taxic divergence dates and durations of speciation. Migrational and evolutionary responses to climate change are not mutually exclusive but, on the contrary, may be synergistic. Finally, preliminary analysis suggests that faunal turnover, including an important element of speciation, was elevated in the Quaternary compared with the Neogene, at least in some biomes. Macroevolutionary species selection or sorting has apparently resulted in a modern mammalian fauna enriched with fast-reproducing and/or adaptively generalist species.  相似文献   
32.
Murcha MW  Lister R  Ho AY  Whelan J 《Plant physiology》2003,131(4):1737-1747
Characterization of components 17 and 23 of the inner mitochondrial membrane translocase (TIM17:23) from Arabidopsis indicated that there were three genes present for TIM17 and TIM23 and two for TIM44. AtTIM17 differed from the yeast (Saccharomyces cerevisiae) and mammalian homologs in that two genes encoded proteins that were longer and one gene encoded a shorter protein. All Arabidopsis TIM23 predicted proteins appeared to lack the first 34 amino acids compared with yeast TIM23. All AtTIM17 and AtTIM23 genes were expressed but displayed different tissue and developmental profiles. Complementation of deletion mutants in yeast indicated that for AtTIM17, the extension at the C terminus not present in yeast had to be removed to achieve complementation, whereas for TIM23, a preprotein and amino acid transporter domain had to be present for complementation. Import assays with AtTIM17 and AtTIM23 indicated that they both contained internal signals for integration into the inner mitochondrial membrane in a membrane potential-dependent manner. The C terminus of imported AtTIM17-2 was susceptible to degradation by externally added protease with intact mitochondria. Removal of the 85 C-terminal amino acids resulted in import and full protection of the truncated protein. This suggests that the novel extension at the C terminus of AtTIM17-2 links the outer and inner membrane in a manner analogous to yeast TIM23.  相似文献   
33.
We recently proposed that patterns of evolution of non-LTR retrotransposable elements can be used to study patterns of spontaneous mutation. Transposition of non-LTR retrotransposable elements commonly results in creation of 5' truncated, "dead-on-arrival" copies. These inactive copies are effectively pseudogenes and, according to the neutral theory, their molecular evolution ought to reflect rates and patterns of spontaneous mutation. Maximum parsimony can be used to separate the evolution of active lineages of a non-LTR element from the fate of the "dead-on-arrival" insertions and to directly assess the relative frequencies of different types of spontaneous mutations. We applied this approach using a non-LTR element, Helena, in the Drosophila virilis group and have demonstrated a surprisingly high incidence of large deletions and the virtual absence of insertions. Based on these results, we suggested that Drosophila in general may exhibit a high rate of spontaneous large deletions and have hypothesized that such a high rate of DNA loss may help to explain the puzzling dearth of bona fide pseudogenes in Drosophila. We also speculated that variation in the rate of spontaneous deletion may contribute to the divergence of genome size in different taxa by affecting the amount of superfluous "junk" DNA such as, for example, pseudogenes or long introns. In this paper, we extend our analysis to the D. melanogaster subgroup, which last shared a common ancestor with the D. virilis group approximately 40 MYA. In a different region of the same transposable element, Helena, we demonstrate that inactive copies accumulate deletions in species of the D. melanogaster subgroup at a rate very similar to that of the D. virilis group. These results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.   相似文献   
34.
35.
36.
The interval since circa 50 Ka has been a period of significant species extinctions among the large mammal fauna. However, the relative roles of an increasing human presence and a synchronous series of complex environmental changes in these extinctions have yet to be fully resolved. Recent analyses of fossil material from Beringia have clarified our understanding of the spatiotemporal pattern of Late Pleistocene extinctions, identifying periods of population turnover well before the last glacial maximum (LGM: circa 21 Ka) or subsequent human expansion. To examine the role of pre-LGM population changes in shaping the genetic structure of an extinct species, we analyzed the mitochondrial DNA of woolly mammoths in western Beringia and across its range. We identify genetic signatures of a range expansion of mammoths, from eastern to western Beringia, after the last interglacial (circa 125 Ka), and then an extended period during which demographic inference indicates no population-size increase. The most marked change in diversity at this time is the loss of one of two major mitochondrial lineages.  相似文献   
37.
38.
Fundulus heteroclitus, the mummichog or Atlantic killifish, is the dominant small-bodied fish species of the east coast estuaries and salt marshes of Canada and the USA, where it is present as two subspecies, the northern F. h. macrolepidotus and the southern F. h. heteroclitus. Recently identified as the premier teleost model in environmental biology, the species has long been of value in understanding evolved tolerance to toxicants and more lately in adding to our knowledge about reproductive effects of environmental endocrine disruptors. The body of literature on F. heteroclitus ovarian physiology and reproduction, from both field and laboratory studies, provides the foundation for present work focused on understanding the reproductive effects and modes of action of environmental toxicants. In this paper, we review the environmental and endocrine factors controlling ovarian and reproductive cycling in F. heteroclitus, noting specifics related to field and laboratory studies on the two subspecies as well as key research gaps compared to other fish species. We also summarize recent development of methodologies to study the effects of environmental contaminants on endocrine signalling and egg production in F. heteroclitus. Continued efforts to progress both our fundamental understanding of reproductive physiology in mummichog, coupled with studies focused on the modes of action of environmental contaminants, have high potential to further develop this teleost model. While the model may presently lag behind those based on other species of fish, the unique biochemical and physiological adaptations which allow F. heteroclitus to adapt to changing environmental and toxic conditions provide a valuable experimental system for comparative physiologists, ecotoxicologists and evolutionary biologists.  相似文献   
39.
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simple relationship to latitude of collection site and considerable diversity occurring within local regions. We explored the contribution to this variation from the two genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), previously shown to be important determinants in natural variation of flowering time. A correlation of FLC expression with flowering time and vernalization was observed, but it was not as strong as anticipated due to many late-flowering/vernalization-requiring accessions being associated with low FLC expression and early-flowering accessions with high FLC expression. Sequence analysis of FRI revealed which accessions were likely to carry functional alleles, and, from comparison of flowering time with allelic type, we estimate that approximately 70% of flowering time variation can be accounted for by allelic variation of FRI. The maintenance and propagation of 20 independent nonfunctional FRI haplotypes suggest that the loss-of-function mutations can confer a strong selective advantage. Accessions with a common FRI haplotype were, in some cases, associated with very different FLC levels and wide variation in flowering time, suggesting additional variation at FLC itself or other genes regulating FLC. These data reveal how useful these Arabidopsis accessions will be in dissecting the complex molecular variation that has led to the adaptive phenotypic variation in flowering time.  相似文献   
40.
Mitochondria are organelles derived from alpha-proteobacteria over the course of one to two billion years. Mitochondria from the major eukaryotic lineages display some variation in functions and coding capacity but sequence analysis demonstrates them to be derived from a single common ancestral endosymbiont. The loss of assorted functions, the transfer of genes to the nucleus, and the acquisition of various 'eukaryotic' proteins have resulted in an organelle that contains approximately 1000 different proteins, with most of these proteins imported into the organelle across one or two membranes. A single translocase in the outer membrane and two translocases in the inner membrane mediate protein import. Comparative sequence analysis and functional complementation experiments suggest some components of the import pathways to be directly derived from the eubacterial endosymbiont's own proteins, and some to have arisen 'de novo' at the earliest stages of 'mitochondrification' of the endosymbiont. A third class of components appears lineage-specific, suggesting they were incorporated into the process of protein import long after mitochondria was established as an organelle and after the divergence of the various eukaryotic lineages. Protein sorting pathways inherited from the endosymbiont have been co-opted and play roles in intraorganelle protein sorting after import. The import apparatus of animals and fungi show significant similarity to one another, but vary considerably to the plant apparatus. Increasing complexity in the eukaryotic lineage, i.e., from single celled to multi-cellular life forms, has been accompanied by an expansion in genes encoding each component, resulting in small gene families encoding many components. The functional differences in these gene families remain to be elucidated, but point to a mosaic import apparatus that can be regulated by a variety of signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号