首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   73篇
  国内免费   3篇
  1092篇
  2023年   4篇
  2022年   15篇
  2021年   10篇
  2020年   13篇
  2019年   20篇
  2018年   23篇
  2017年   26篇
  2016年   22篇
  2015年   40篇
  2014年   44篇
  2013年   63篇
  2012年   75篇
  2011年   79篇
  2010年   45篇
  2009年   43篇
  2008年   44篇
  2007年   60篇
  2006年   60篇
  2005年   44篇
  2004年   70篇
  2003年   57篇
  2002年   64篇
  2001年   11篇
  2000年   12篇
  1999年   18篇
  1998年   17篇
  1997年   15篇
  1996年   20篇
  1995年   6篇
  1994年   5篇
  1993年   8篇
  1992年   10篇
  1990年   7篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1976年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1945年   2篇
  1926年   1篇
  1925年   1篇
排序方式: 共有1092条查询结果,搜索用时 15 毫秒
51.
Three cytoplasmic loops in the G protein-coupled receptor rhodopsin, C2, C3, and C4, have been implicated as key sites for binding and activation of the visual G protein transducin. Non-helical portions of the C2- and C3-loops and the cytoplasmic helix-8 from the C4 loop were targeted for a "gain-of-function" mutagenesis to identify rhodopsin residues critical for transducin activation. Mutant opsins with residues 140-148 (C2-loop), 229-244 (C3-loop), or 310-320 (C4-loop) substituted by poly-Ala sequences of equivalent lengths served as templates for mutagenesis. The template mutants with poly-Ala substitutions in the C2- and C3-loops formed the 500-nm absorbing pigments but failed to activate transducin. Reverse substitutions of the Ala residues by rhodopsin residues have been generated in each of the templates. Significant ( approximately 50%) restoration of the rhodopsin/transducin coupling was achieved with re-introduction of residues Cys140/Lys141 and Arg147/Phe148 into the C2 template. The reverse substitutions of the C3-loop residues Thr229/Val230 and Ser240/Thr242/Thr243/Gln244 produced a pigment with a full capacity for transducin activation. The C4 template mutant was unable to bind 11-cis-retinal, and the presence of Asn310/Lys311 was required for correct folding of the protein. Subsequent mutagenesis of the C4-loop revealed the role of Phe313 and Met317. On the background of Asn310/Lys311, the inclusion of Phe313 and Met317 produced a mutant pigment with the potency of transducin activation equal to that of the wild-type rhodopsin. Overall, our data support the role of the three cytoplasmic loops of rhodopsin and suggest that residues adjacent to the transmembrane helices are most important for transducin activation.  相似文献   
52.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (F(o)) and to markedly retard the light-induced rise of variable fluorescence (F(v)). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to F(o) level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench F(v) at low concentration, while F(o) was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched F(o) level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   
53.
Addition of NADP(+) to thylakoid membranes or isolated photosystem I (PSI) submembrane fractions quenched chlorophyll fluorescence by up to 40% at low or room temperature. This quenching was reversed by NADPH. Similar quenching was also observed with the addition of heparin or thenoyltrifluoroacetone (TTFA), inhibitors that bind ferredoxin:NADP(+) reductase (FNR) and prevent reduction of NADP(+). The NADP(+)-induced quenching coincided with a reversible conformational change of the secondary protein structure in the PSI submembrane fractions where 20% of the alpha-helix conformations were transformed mainly into beta-sheet-like structures. Further, P700 photooxidation was retarded due to this conformational change, and about 25% of the centers could not be photooxidized, these changes being also reversible with addition of NADPH. The above modifications in the presence of NADP(+) also increased photodamage processes under strong illumination, and NADPH protected it. Conformational modification of FNR upon binding of NADP(+) or NADPH is proposed to trigger the macromolecular changes in a larger part of the protein complex of PSI. The conformational changes must increase the intermolecular distances and change the mutual orientation between the various cofactors in the PSI complex. This new control mechanism of energy dissipation and photochemical activity by NADP(+)/NADPH is proposed to increase the turnover rate of PSI under conditions when both linear and cyclic electron transport activities must be supported.  相似文献   
54.
The (1)H NMR resonances of the heme substituents of the low-spin Fe(III) form of nitrophorin 2, as its complexes with N-methylimidazole (NP2-NMeIm) and imidazole (NP2-ImH), have been assigned by a combination of (1)H homonuclear two-dimensional NMR techniques and (1)H-(13)C HMQC. Complete assignment of the proton and partial assignment of the (13)C resonances of the heme of these complexes has been achieved. Due to favorable rates of ligand exchange, it was also possible to assign part of the (1)H resonances of the high-spin heme via saturation transfer between high- and low-spin protein forms in a partially liganded NP2-NMeIm sample; additional resonances (vinyl and propionate) were assigned by NOESY techniques. The order of heme methyl resonances in the high-spin form of the protein over the temperature range of 10-37 degrees C is 8 = 5 > 1 > 3; the NMeIm complex has 5 > 1 > 3 > 8 as the order of heme methyl resonances at <30 degrees C, while above that temperature, the order is 5 > 3 > 1 > 8, due to crossover of the closely spaced 3- and 1-methyl resonances of the low-spin complex at higher temperatures. This crossover defines the nodal plane of the heme orbital used for spin delocalization as being oriented 162 +/- 2 degrees clockwise from the heme N(II)-Fe-N(IV) axis for the heme in the B orientation. For the NP2-ImH complex, the order of heme methyl resonances is 3 > 5 > 1 > 8, which defines the orientation of the nodal plane of the heme orbital used for spin delocalization as being oriented approximately 150-155 degrees clockwise from the heme N(II)-Fe-N(IV) axis. In both low-spin complexes, the results are most consistent with the exogenous planar ligand controlling the orientation of the nodal plane of the heme orbital. In the high-spin form of NP2, the proximal histidine plane is shown to be oriented 135 degrees clockwise from the heme N(II)-Fe-N(IV) axis, again for the B heme orientation. A correlation between the order of heme methyl resonances in the high-spin form of NP2 and several other ferriheme proteins and an apparent 90 degrees shift in the nodal plane of the orbital involved in spin delocalization from that expected on the basis of the orientation of the axial histidine imidazole nodal plane have been explained in terms of bonding interactions between Fe(III), the axial histidine imidazole nitrogen, and the porphyrin pi orbitals of the high-spin protein.  相似文献   
55.
To investigate whether nongastric H+-K+-ATPases transport Na+ in exchange for K+ and whether different beta-isoforms influence their transport properties, we compared the functional properties of the catalytic subunit of human nongastric H+-K+-ATPase, ATP1al1 (AL1), and of the Na+-K+-ATPase alpha1-subunit (alpha1) expressed in Xenopus oocytes, with different beta-subunits. Our results show that betaHK and beta1-NK can produce functional AL1/beta complexes at the oocyte cell surface that, in contrast to alpha1/beta1 NK and alpha1/betaHK complexes, exhibit a similar apparent K+ affinity. Similar to Na+-K+-ATPase, AL1/beta complexes are able to decrease intracellular Na+ concentrations in Na+-loaded oocytes, and their K+ transport depends on intra- and extracellular Na+ concentrations. Finally, controlled trypsinolysis reveals that beta-isoforms influence the protease sensitivity of AL1 and alpha1 and that AL1/beta complexes, similar to the Na+-K+-ATPase, can undergo distinct K+-Na+- and ouabain-dependent conformational changes. These results provide new evidence that the human nongastric H+-K+-ATPase interacts with and transports Na+ in exchange for K+ and that beta-isoforms have a distinct effect on the overall structural integrity of AL1 but influence its transport properties less than those of the Na+-K+-ATPase alpha-subunit.  相似文献   
56.
The MkaH protein from the archaeon Methanopyrus kandleri, an unusual assembly of two histone-fold domains in a single polypeptide chain, demonstrates high structural similarity to eukaryal histones. We studied the DNA binding and self-association properties of MkaH by means of the electrophoretic mobility shift assay (EMSA), electron microscopy (EM), chemical cross-linking, and analytical gel filtration. EMSA showed an increased mobility of linear DNA complexed with MkaH protein with a maximum at a protein-DNA weight ratio (R(w)) of approximately 3; the mobility decreased at higher protein concentration. EM of the complexes formed at Rw or=9) thickened compact nucleoprotein structures were observed; no individual loops were seen within the complexes. Gel filtration chromatography and chemical fixation indicated that in the absence of DNA the dominant form of the MkaH in solution, unlike other archaeal histones, is a stable dimer (pseudo-tetramer of the histone-fold domain) apparently resembling the eukaryal (H3-H4)(2) tetramer. Similarly, dimers are the dominant form of the protein interacting with DNA. The properties of MkaH supporting the assignment of its intermediate position between other archaeal and eukaryal histones are discussed.  相似文献   
57.
Dietary soy may attenuate the development of arterial hypertension. In addition, some soy-containing foods exhibit angiotensin-converting enzyme (ACE) inhibitory properties. Accordingly, we tested the hypothesis that ACE inhibition contributes to the antihypertensive effect of dietary soy. Mean arterial blood pressure (MAP) was recorded from conscious spontaneously hypertensive rats (SHR) at least 24 h after the implantation of catheters. Cumulative dose-response curves to intravenous angiotensin I (AI) (5-100 ng x kg(-1) x min(-1)) and angiotensin II (AII) (1-20 ng x kg(-1) x min(-1)) were constructed for male, sham-operated female, and ovariectomized female (OVX) SHR that were maintained on either casein or soy diets. The soy diet was associated with a significant reduction in baseline MAP in the OVX SHR (approximately 20 mmHg, 1 mmHg = 133.322 Pa). AI and AII infusions caused graded increases in MAP in all groups. However, there was no significant attenuation of the pressor responses to AI in the soy-fed SHR. Conversely, we observed a significant rightward displacement of the AII dose-response curves in the soy-fed sham-operated and OVX SHR. We conclude that ACE inhibition does not account for the antihypertensive effect of dietary soy in mature SHR.  相似文献   
58.
17Alpha-estradiol (1,3,5(10)-estratriene-3,17alpha-diol) together with a tracer dose of the tritium-labeled compound was administered orally and sublingually to male volunteers. The serum concentrations of 17alpha-estradiol (free and liberated by enzymatic hydrolysis) were quantified by GC/MS, and the serum total radioactivity and urinary radioactivity excretion were determined. After oral administration, 17alpha-estradiol was rapidly and intensively conjugated; only tiny quantities of the free steroid (<1% of total) appeared in serum. Sublingual administration resulted in temporary (up to 3 h p.a.) higher serum levels of the free compound. The metabolite patterns obtained by TLC of extracts from serum and urine demonstrated that 17alpha-estradiol is the subject of a poor phase I metabolism in man. A great discrepancy was found in the serum concentrations of 17alpha-estradiol (free + conjugated) determined by GC/MS and the serum radioactivity expressed in 17alpha-estradiol equivalents. By TLC analysis of the steroid conjugates extracted from serum, various 17alpha-estradiol conjugate peaks were found. By enzymatic hydrolysis with beta-glucuronidase/aryl sulfatase from Helix pomatia they were only partially cleaved. Thus, the difference between the serum radioactivity and the 17alpha-estradiol levels determined by GC/MS had to be attributed to an incomplete conjugate hydrolysis. It has been shown with the synthesized 17alpha-estradiol sulfate conjugates that only the 3-sulfate is cleaved by enzymatic hydrolysis, whereas the 17-sulfate group resists enzymatic hydrolysis. The methanolysis procedure (acetyl chloride in MeOH) has proved to be an efficient method for cleaving both the 3-sulfate group and the 17-sulfate group. In contrast to the 17alpha-estradiol conjugates in serum, the urinary conjugates were intensively split by the enzyme preparation. From this, it has to be concluded that the serum conjugates were deconjugated and newly reconjugated before urinary excretion.  相似文献   
59.
Human sperm, unlike the sperm of other mammals, contain replacement histones with unknown biological functions. Here, we report the identification of the novel human gene coding for a testis/sperm-specific histone H2B (hTSH2B). This variant histone is 85% homologous to somatic H2B and has over 93% homology with the testis H2B of rodents. Using genomic PCR, two genetic alleles of hTSH2B were found in the human population. The hTSH2B gene is transcribed exclusively in testis, and the corresponding protein is also present in mature sperm. We expressed recombinant hTSH2B and identified this protein with a particular H2B subtype expressed in vivo. The subnuclear distribution of H2B variants in sperm was determined using biochemical fractionation and immunoblotting. The H2B variant associated with telomere-binding activity () was solubilized by Triton X-100 or micrococcal nuclease extraction, whereas hTSH2B was relatively tightly bound in nuclei. Immunofluorescence showed that hTSH2B was concentrated in spots located at the basal nuclear area of a subpopulation (20% of cells) of mature sperm. This fact may be of particular importance, because the hTSH2B "positive" and "negative" sperm cells may undergo significantly different decondensation processes following fertilization.  相似文献   
60.
High-resolution NMR structure of an AT-rich DNA sequence   总被引:2,自引:0,他引:2  
We have determined, by proton NMR and complete relaxation matrix methods, the high-resolution structure of a DNA oligonucleotide in solution with nine contiguous AT base pairs. The stretch of AT pairs, TAATTATAATTATAATTA, is imbedded in a 27-nucleotide stem-and-loop construct, which is stabilized by terminal GC base pairs and an extraordinarily stable DNA loop GAA (Hirao et al., 1994, Nucleic Acids Res. 22, 576–582). The AT-rich sequence has three repeated TAATTA motifs, one in the reverse orientation. Comparison of the local conformations of the three motifs shows that the sequence context has a minor effect here: atomic RMSD between the three TAATTA fragments is 0.4–0.5 Å, while each fragment is defined within the RMSD of 0.3–0.4 Å. The AT-rich stem also contains a consensus sequence for the Pribnow box, TATAAT. The TpA, ApT, and TpTApA steps have characteristic local conformations, a combination of which determines a unique sequence-dependent pattern of minor groove width variation. All three TpA steps are locally bent in the direction compressing the major groove of DNA. These bends, however, compensate each other, because of their relative position in the sequence, so that the overall helical axis is essentially straight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号