首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  1993年   1篇
  1991年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有54条查询结果,搜索用时 989 毫秒
11.
The recently identified type VI secretion system (T6SS) is implicated in the virulence of many Gram-negative bacteria. Edwardsiella tarda is an important cause of hemorrhagic septicemia in fish and also gastro- and extra-intestinal infections in humans. The E . tarda virulent protein (EVP) gene cluster encodes a conserved T6SS which contains 16 open reading frames. EvpC is one of the three major EVP secreted proteins and shares high sequence similarity with Hcp1, a key T6SS virulence factor from Pseudomonas aeruginosa. EvpC contributes to the virulence of E. tarda by playing an essential role in functional T6SS. Here, we report the crystal structure of EvpC from E. tarda PPD130/91 at a 2.8 Å resolution, along with functional studies of the protein. EvpC has a β-barrel domain with extended loops. The β-barrel consists of 11 anti-parallel β-strands with an α-helix located on one side. In solution, EvpC exists as a dimer at low concentration and as a hexamer at higher concentration. In the crystal, the symmetry related EvpC molecules form hexameric rings which stack together to form a tube similar to Hcp1. Structure based mutagenesis revealed that N-terminal negatively charged residues, Asp4, Glu15 and Glu26, and C-terminal positively charged residues, Lys161, Lys162 and Lys163, played crucial roles in the secretion of EvpC. Moreover, the localization study indicates the presence of wild type EvpC in cytoplasm, periplasm and secreted fractions, whereas the N-terminal and C-terminal mutants were found mostly in the periplasmic region and was completely absent in the secreted fraction. Results reported here provide insight into the structure, assembly and function of EvpC. Further, these findings can be extended to other EvpC homologs for understanding the mechanism of T6SS and targeting T6SS mediated virulence in Gram-negative pathogens.  相似文献   
12.
Metallo-beta-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containing, hydrolytic enzymes; particularly those with a beta-lactamase fold. In an effort to probe the catalytic and metal-binding role of Asp-120 in L1, three site-directed mutants (D120C, D120N, and D120S) were prepared and characterized using metal analyses, circular dichroism spectroscopy, and presteady-state and steady-state kinetics. The D120C, D120N, and D120S mutants were shown to bind 1.6 +/- 0.2, 1.8 +/- 0.2, and 1.1 +/- 0.2 mol of Zn(II) per monomer, respectively. The mutants exhibited 10- to 1000-fold drops in kcat values as compared with wild-type L1, and a general trend of activity, wild-type > D120N > D120C and D120S, was observed for all substrates tested. Solvent isotope and pH dependence studies indicate one or more protons in flight, with pKa values outside the range of pH 5-10 (except D120N), during a rate-limiting step for all the enzymes. These data demonstrate that Asp-120 is crucial for L1 to bind its full complement of Zn(II) and subsequently for proper substrate binding to the enzyme. This work also confirms that Asp-120 plays a significant role in catalysis, presumably via hydrogen bonding with water, assisting in formation of the bridging hydroxide/water, and a rate-limiting proton transfer in the hydrolysis reaction.  相似文献   
13.
The 4.1 superfamily of proteins contain a 4.1 Ezrin Radixin Moesin (FERM) domain and are described as linking the cytoskeleton with the plasma membrane. Here, we describe a new FERM domain-containing protein called Willin. Willin has a recognizable FERM domain within its N-terminus and is capable of binding phospholipids. Its intra-cellular distribution can be cytoplasmic or at the plasma membrane where it can co-localize with actin. However, the plasma membrane location of Willin is not influenced by cytochalasin D induced actin disruption but it is induced by the addition of epidermal growth factor.  相似文献   
14.
Protected areas are effective at stopping biodiversity loss, but their placement is constrained by the needs of people. Consequently protected areas are often biased toward areas that are unattractive for other human uses. Current reporting metrics that emphasise the total area protected do not account for this bias. To address this problem we propose that the distribution of protected areas be evaluated with an economic metric used to quantify inequality in income--the Gini coefficient. Using a modified version of this measure we discover that 73% of countries have inequitably protected their biodiversity and that common measures of protected area coverage do not adequately reveal this bias. Used in combination with total percentage protection, the Gini coefficient will improve the effectiveness of reporting on the growth of protected area coverage, paving the way for better representation of the world's biodiversity.  相似文献   
15.
Bone marrow derived stem cells (BMSC) have paved way to clinical approaches for its utilization in a variety of diseases due to its ease of isolation combined with its multilineage differentiation capacity. However, the applicability of BMSC is not successful due to the lesser number of nucleated cells obtained from large samples. Hence, culture expansion of BMSC is a prerequisite, as high numbers of stem cells are needed to meet the standards of clinical advancement. There are attempts on optimizing culture condition for large scale production of BMSC. It was believed that, prolonged culture of BMSC is difficult since they tend to lose their characteristics and differentiation potential. Hence, our study aims to determine whether BMSCs could retain its proliferative and differentiation capacity in prolonged in vitro culture by a comparative study on extensive culturing of BMSC with the following four media, DMEM LG (DMEM-Low Glucose), DMEM KO (DMEM-Knock Out), Alpha MEM (Alpha Minimal Essential Medium), DMEM F 12. We found that two samples among the three cultured tend to lose their property in long term culturing. Besides, we also found that DMEM LG and Alpha MEM were the optimal media for in vitro culturing of BMSC. Overall, it was concluded that BMSC can be cultured until passage 15 without losing its characteristics. However, its potency beyond passage 15 has to be further elucidated for utilization of the ex vivo expanded BMSC for subsequent cellular therapies.  相似文献   
16.
The insulin-like effects of peroxovanate (POV) and peroxovanadyl (PSV) on rates of lactate formation and glycogen synthesis were measured in isolated incubated soleus muscle preparations. In another experiment rats were made insulin deficient by streptozotocin injection and treated with POV and PSV (0.25 mM) administered in the drinking water and in the course of 7 days glycemia were determined. Also, signal transduction proteins ERK 1 and ERK 2 involved in the insulin signaling were measured in soleus muscle of diabetic rats treated with POV and PSV. Peroxides of vanadate and vanadyl significantly stimulated glucose utilization in soleus muscle preparations in vitro. The stimulation of glycogen synthesis and lactate formation by POV and PSV was similar to insulin stimuli. Rats treated with POV or PSV presented reduction of glycemia, food and fluid intake with amelioration of the diabetic state during the short period of treatment (7 days). POV and PSV modulated ERK1/2 phosphorilation and the insulin administration in these rats caused an addictive effect on phosphorilation state of these proteins.  相似文献   
17.
Fruit ripening can be seen as an oxidative phenomenon that, depending on its intensity, may directly influence fruit quality. At relatively higher altitudes, coffee fruit ripening takes place through an extended period of time, which positively affects coffee quality. However, little is known about the oxidative processes and antioxidant metabolism of coffee fruits grown at these altitudes. Thus, this study aimed to characterise coffee fruit development from trees grown at two contrasting altitudes (965 m and 1310 m) through phenological analysis and antioxidant metabolism evaluation (Hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents; superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activity and gene expression). Phenological analysis showed that altitude extended coffee reproductive cycle by a month and promoted a higher ripening uniformity, with 100% of fruits at the ideal ripening stage for harvest (cherry stage) in the last evaluation time. H2O2 and malondialdehyde contents revealed that in both altitudes fruits went through oxidative damage, though in an early manner at the lower altitude. Although gene expression and enzyme activity did not well correlate, the delay in the oxidative damage in fruits of the higher altitude was probably a result of an increased efficiency in H2O2 neutralisation due to the higher activity levels of the APX and CAT enzymes, mainly in green fruits. Thus, a better removal of reactive oxygen species in coffee fruits from plants grown at higher altitudes is involved in the extension of the coffee reproductive cycle, contributing to the production of a higher cup quality coffee.  相似文献   
18.
Macrophomina pseudophaseolina is a new Macrophomina species reported on different crop and weed species in Brazil, India and Senegal, but to date there are no studies about its adaptability components. In this work, a collection of 62 M. pseudophaseolina isolates obtained from roots of the weed species Trianthema portulacastrum and Boerhavia diffusa collected in Northeastern Brazil, was used to: (a) study the effect of temperature and salinity on mycelial growth, (b) to determine their sensitivity to the fungicide carbendazim and (c) to assess their aggressiveness on melon and watermelon seedlings. Results showed variability among M. pseudophaseolina isolates. The optimum temperature for mycelial growth ranged between 26.4 and 38.1ºC. NaCl reduced the in vitro growth of all isolates, which were also highly sensitive to the fungicide carbendazim, exhibiting EC50 values ranging from 0.013 to 0.089 mg/L a.i. Disease severity values on melon and watermelon seedlings showed that M. pseudophaseolina isolates were more aggressive in melon than in watermelon. Information about adaptability components of M. pseudophaseolina obtained in this study could be incorporated on breeding programs for melon and watermelon crops.  相似文献   
19.

Background

Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that dynamin can participate in a phagocytic process.

Methodology/Principal Findings

We used a compound called dynasore that has the ability to block the GTPase activity of dynamin. Dynasore acts as a potent inhibitor of endocytic pathways by blocking coated vesicle formation within seconds of its addition. Here, we investigated whether dynamin is involved in the entry process of T. cruzi in phagocytic and non-phagocytic cells by using dynasore. In this aim, peritoneal macrophages and LLC-MK2 cells were treated with increasing concentrations of dynasore before interaction with trypomastigotes, amastigotes or epimastigotes. We observed that, in both cell lines, the parasite internalization was drastically diminished (by greater than 90% in LLC-MK2 cells and 70% in peritoneal macrophages) when we used 100 µM dynasore. The T. cruzi adhesion index, however, was unaffected in either cell line. Analyzing these interactions by scanning electron microscopy and comparing peritoneal macrophages to LLC-MK2 cells revealed differences in the stage at which cell entry was blocked. In LLC-MK2 cells, this blockade is observed earlier than it is in peritoneal macrophages. In LLC-MK2 cells, the parasites were only associated with cellular microvilli, whereas in peritoneal macrophages, trypomastigotes were not completely engulfed by a host cell plasma membrane.

Conclusions/Significance

Taken together our results demonstrate that dynamin is an essential molecule necessary for cell invasion and specifically parasitophorous vacuole formation by host cells during interaction with Trypanosoma cruzi.  相似文献   
20.
The present work calculated the rate of inactivation of Cryptosporidium parvum oocysts attributable to daily oscillations of low ambient temperatures. The relationship between air temperature and the internal temperature of bovine feces on commercial operations was measured, and three representative 24-h thermal regimens in the ∼15°C, ∼25°C, and ∼35°C ranges were chosen and emulated using a thermocycler. C. parvum oocysts suspended in deionized water were exposed to the temperature cycles, and their infectivity in mice was tested. Oral inoculation of 103 treated oocysts per neonatal BALB/c mouse (∼14 times the 50% infective dose) resulted in time- and temperature-dependent reductions in the proportion of infected mice. Oocysts were completely noninfectious after 14 24-h cycles with the 30°C regimen and after 70 24-h cycles with the 20°C regimen. In contrast, oocysts remained infectious after 90 24-h cycles with the 10°C regimens. The estimated numbers of days needed for a 1-log10 reduction in C. parvum oocyst infectivity were 4.9, 28.7, and 71.5 days for the 30, 20, and 10°C thermal regimens, respectively. The loss of infectivity of oocysts induced by these thermal regimens was due in part to partial or complete in vitro excystation.It is well recognized that the protozoan parasite Cryptosporidium parvum causes waterborne enteric disease and poses a significant threat to public health. Fecal contamination from infected hosts, such as humans and some species of livestock and wildlife (17), can lead to elevated concentrations of C. parvum oocysts in drinking, recreational, and irrigation water supplies (6, 8). Once excreted, C. parvum oocysts can be eluted from fresh fecal matrices during precipitation events that generate surface flow or runoff conditions (4, 5, 12, 21, 32). During cool moist conditions oocysts can persist for months in the environment (10, 11, 25, 30), but factors such as extremes of temperature, exposure to UV radiation, and desiccation can substantially reduce the number of infective oocysts prior to waterborne transport (2, 7, 9, 11, 19, 24, 25, 29, 30).To examine thermal stress, most studies have used constant thermal regimens to investigate the effect of temperature on the viability or infectivity of Cryptosporidium oocysts (11, 14, 20, 28, 30). To complement this work, we previously investigated the impact of large daily changes in the ambient temperature on C. parvum oocyst infectivity, using spring through autumn thermal regimens and temperatures measured inside bovine fecal pats that were exposed to solar radiation at cow-calf and dairy production facilities (23). Under California''s summer climatic conditions, internal fecal pat temperatures range from 45°C to 75°C during the day and decrease 10 to 60°C during the night. Exposing oocysts to these large thermal fluctuations results in >3.3-log10 reductions in oocyst infectivity in each 24-h cycle (23). The present study was conducted in order to measure the effect of exposure to oocysts to cool-season daily temperatures (with peaks at temperatures greater than 10°C, 20°C, and 30°C) on the rate of inactivation of C. parvum oocysts. Determining the temperature-dependent rate of C. parvum oocyst inactivation for these lower temperatures would allow grazing management and source water assessment plans to more properly predict the amount of time needed for exclusion of cattle prior to the onset of winter precipitation in order to inactivate sufficient numbers of oocysts in critical watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号