首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   1篇
  2009年   8篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1984年   1篇
  1973年   1篇
  1971年   1篇
  1954年   1篇
  1934年   1篇
  1923年   1篇
  1922年   2篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
11.

Background

Recent research has indicated a positive association between rates of molecular evolution and diversification in a number of taxa. However debate continues concerning the universality and cause of this relationship. Here, we present the first systematic investigation of this relationship within the mammals. We use phylogenetically independent sister-pair comparisons to test for a relationship between substitution rates and clade size at a number of taxonomic levels. Total, non-synonymous and synonymous substitution rates were estimated from mitochondrial and nuclear DNA sequences.

Results

We found no evidence for an association between clade size and substitution rates in mammals, for either the nuclear or the mitochondrial sequences. We found significant associations between body size and substitution rates, as previously reported.

Conclusions

Our results present a contrast to previous research, which has reported significant positive associations between substitution rates and diversification for birds, angiosperms and reptiles. There are three possible reasons for the differences between the observed results in mammals versus other clades. First, there may be no link between substitution rates and diversification in mammals. Second, this link may exist, but may be much weaker in mammals than in other clades. Third, the link between substitution rates and diversification may exist in mammals, but may be confounded by other variables.  相似文献   
12.
13.
14.
Unisexual (all female) salamanders in the genus Ambystoma are animals of variable ploidy (2N‐5N) that reproduce via a unique system of ‘leaky’ gynogenesis. As a result, these salamanders have a diverse array of nuclear genome combinations from up to five sexual species: the blue‐spotted (A. laterale), Jefferson (A. jeffersonianum), smallmouth (A. texanum), tiger (A. tigrinum) and streamside (A. barbouri) salamanders. Identifying the genome complement, or biotype, is a critical first step in addressing a broad range of ecological and evolutionary questions about these salamanders. Previous work relied upon genome‐related differences in allele size distributions for specific microsatellite loci, but overlap in these distributions among different genomes makes definitive identification and ploidy determination in unisexuals difficult or impossible. Here, we develop the first single nucleotide polymorphism assay for the identification of unisexual biotypes, based on species‐specific nucleotide polymorphisms in noncoding DNA loci. Tests with simulated and natural unisexual DNA samples show that this method can accurately identify genome complement and estimate ploidy, making this a valuable tool for assessing the genome composition of unisexual samples.  相似文献   
15.
Genetic analyses for many widespread North American species have revealed significant east-west differentiation, indicating that many survived through the Pleistocene in 2 glacial refugia-1 in the eastern and 1 in the western part of the continent. It remains unclear, however, whether other areas may have served as important glacial refugia. Moreover, many such species exhibit widespread genetic similarity within eastern and western regions because of recent expansion from small refugial populations, making it difficult to evaluate current-day levels of gene flow. In this study, we used mitochondrial DNA (mtDNA) control region sequence and amplified fragment length polymorphism markers to survey genetic variation in a widespread migratory bird, the American redstart (Setophaga ruticilla). mtDNA analyses revealed a pattern that contrasts with that found for most other widespread species studied to date: most redstart populations across North America appear to have spread out from a single glacial refugium, possibly located in the southeastern United States, whereas populations in far-eastern Canada may have survived in a second glacial refugium located on the now-submerged Atlantic coastal shelf off the coast of Newfoundland. A pattern of isolation by distance in mtDNA suggested some constraints on current-day gene flow among extant redstart populations. This study thus reveals a recent evolutionary history for this species that differs from that of most other widespread North American passerines and provides evidence for limited gene flow in a species with potentially large dispersal distances.  相似文献   
16.
We used data collected over 3 years at two study sites to quantifythe rates and consequences of multiple paternity and to determinethe opportunity for selection on male and female northern watersnakes (Nerodia sipedon). We sampled litters from 45 femalesthat gave birth to 811 offspring. Using eight microsatelliteDNA loci (probability of exclusion of nonparental males >0.99), we assigned paternity to 93% of neonates from one studypopulation and 69% of neonates from the other population. Observationsof participation in mating aggregations predicted individual reproductive success poorly for two reasons. First, males regularlycourted nonreproductive females. Second, more than half ofall sexually mature males obtained no reproductive successeach year, despite the fact that many of them participatedin mating aggregations. The number of sires per litter ranged from one to five, with 58% of all litters sired by more thanone male. Multiple paternity increased with female size, apparentlyboth because bigger females mated with more males and becausethe larger litters of big females provide paternity opportunitiesto more males. Multiple paternity was also more prevalent inyears with shorter mating seasons. We detected no advantage to multiple paternity in reducing either the number of unfertilizedovules or stillborn young. Despite the majority of males siringno young each year, some males fathered young with as manyas three different females in one year. Male reproductive successincreased by more than 10 offspring for each additional mate,whereas female success increased by fewer than 2 offspring foreach additional mate. The opportunity for sexual selectionwas more than five times higher in males than females.  相似文献   
17.
Microsatellite DNA markers were used to investigate parentage relationships in a population of common cuckoo Cuculus canorus. Thirty adults and 55 nestlings were genotyped at six loci from blood samples collected over a four‐year period. To test whether each cuckoo female specialises in parasitising one single host species (Host Preference Hypothesis), the maternal relationships were used to record each female's host choice. The results supported the Host Preference Hypothesis since no female (N=3) was recorded to have parasitised more than one of four congeneric host species breeding in the area. In contrast, the males (N=4) did not show such specialisation since two of them sired offspring reared by different host species.  相似文献   
18.
In group‐living species, the degree of relatedness among group members often governs the extent of reproductive sharing, cooperation and conflict within a group. Kinship among group members can be shaped by the presence and location of neighbouring groups, as these provide dispersal or mating opportunities that can dilute kinship among current group members. Here, we assessed how within‐group relatedness varies with the density and position of neighbouring social groups in Neolamprologus pulcher, a colonial and group‐living cichlid fish. We used restriction site‐associated DNA sequencing (RADseq) methods to generate thousands of polymorphic SNPs. Relative to microsatellite data, RADseq data provided much tighter confidence intervals around our relatedness estimates. These data allowed us to document novel patterns of relatedness in relation to colony‐level social structure. First, the density of neighbouring groups was negatively correlated with relatedness between subordinates and dominant females within a group, but no such patterns were observed between subordinates and dominant males. Second, subordinates at the colony edge were less related to dominant males in their group than subordinates in the colony centre, suggesting a shorter breeding tenure for dominant males at the colony edge. Finally, subordinates who were closely related to their same‐sex dominant were more likely to reproduce, supporting some restraint models of reproductive skew. Collectively, these results demonstrate that within‐group relatedness is influenced by the broader social context, and variation between groups in the degree of relatedness between dominants and subordinates can be explained by both patterns of reproductive sharing and the nature of the social landscape.  相似文献   
19.
Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the "photopsychrophiles") in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10 degrees C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes.  相似文献   
20.
The estimation and maintenance of connectivity among local populations is an important conservation goal for many species at risk. We used Bayesian statistics and coalescent theory to estimate short- and long-term directional gene flow among subpopulations for two reptiles that occur in Canada as peripheral populations that are geographically disjunct from the core of their respective species’ ranges: the black ratsnake and the Blanding’s turtle. Estimates of directional gene flow were used to examine population connectivity and potential genetic source-sink dynamics. For both species, our estimates of directional short- and long-term gene flow were consistently lower than estimates inferred previously from F ST measures. Short- and long-term gene flow estimates were discordant in both species, suggesting that population dynamics have varied temporally in both species. These estimates of directional gene flow were used to identify specific subpopulations in both species that may be of high conservation value because they are net exporters of individuals to other subpopulations. Overall, our results show that the use of more sophisticated methods to evaluate population genetic data can provide valuable information for the conservation of species at risk, including bidirectional estimates of subpopulation connectivity that rely on fewer assumptions than more traditional analyses. Such information can be used by conservation practitioners to better understand the geographic scope required to maintain a functional metapopulation, determine which habitat corridors within a working landscape may be most important to maintain connectivity among subpopulations, and to prioritize subpopulations with respect to their potential to act as genetic sources within the metapopulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号