首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   768篇
  免费   64篇
  2021年   12篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   12篇
  2016年   20篇
  2015年   28篇
  2014年   29篇
  2013年   41篇
  2012年   59篇
  2011年   46篇
  2010年   29篇
  2009年   19篇
  2008年   47篇
  2007年   45篇
  2006年   38篇
  2005年   27篇
  2004年   26篇
  2003年   36篇
  2002年   31篇
  2001年   11篇
  2000年   12篇
  1999年   15篇
  1998年   11篇
  1997年   9篇
  1996年   5篇
  1995年   6篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   11篇
  1988年   10篇
  1987年   10篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   6篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1974年   8篇
  1973年   5篇
  1972年   5篇
  1966年   3篇
  1955年   3篇
排序方式: 共有832条查询结果,搜索用时 15 毫秒
141.
The single-stranded telomeric DNA binding protein POT1 protects mammalian chromosome ends from the ATR-dependent DNA damage response, regulates telomerase-mediated telomere extension, and limits 5'-end resection at telomere termini. Whereas most mammals have a single POT1 gene, mice have two POT1 proteins that are functionally distinct. POT1a represses the DNA damage response, and POT1b controls 5'-end resection. In contrast, as we report here, POT1a and POT1b do not differ in their ability to repress telomere recombination. By swapping domains, we show that the DNA binding domain of POT1a specifies its ability to repress the DNA damage response. However, no differences were detected in the in vitro DNA binding features of POT1a and POT1b. In contrast to the repression of ATR signaling by POT1a, the ability of POT1b to control 5'-end resection was found to require two regions in the C terminus, one corresponding to the TPP1 binding domain and a second representing a new domain located between amino acids (aa) 300 and 350. Interestingly, the DNA binding domain of human POT1 can replace that of POT1a to repress ATR signaling, and the POT1b region from aa 300 to 350 required for the regulation of the telomere terminus is functionally conserved in human POT1. Thus, human POT1 combines the features of POT1a and POT1b.  相似文献   
142.
143.
Cellular gene expression machinery has coevolved with molecular parasites, such as viruses and transposons, which rely on host cells for their expression and reproduction. We previously reported that a wild-derived allele of mouse Nxf1 (Tap), a key component of the host mRNA nuclear export machinery, suppresses two endogenous retrovirus-induced mutations and shows suggestive evidence of positive selection. Here we show that Nxf1CAST suppresses a specific and frequent class of intracisternal A particle (IAP)-induced mutations, including Ap3d1mh2J, a model for Hermansky-Pudlak syndrome, and Atcayhes, an orthologous gene model for Cayman ataxia, among others. The molecular phenotype of suppression includes ∼two-fold increase in the level of correctly-spliced mRNA and a decrease in mutant-specific, alternatively-processed RNA accumulating from the inserted allele. Insertional mutations involving ETn and LINE elements are not suppressed, demonstrating a high degree of specificity to this suppression mechanism. These results implicate Nxf1 in some instances of pre-mRNA processing, demonstrate the useful range of Nxf1CAST alleles for manipulating existing mouse models of disease, and specifically imply a low functional threshold for therapeutic benefit in Cayman ataxia.  相似文献   
144.
The gfp gene from the jellyfish Aequorea victoria, coding for the Green Fluorescent Protein (GFP), was used as a reporter gene to transform a Trichoderma virens strain I10, characterized as having a promising biocontrol activity against a large number of phytopathogenic fungi. On the basis of molecular and biological results, a stable GFP transformant was selected for further experiments. In order to evaluate the effects of GFP transformation on mycoparasitic ability of T. virens I10, sclerotia of Sclerotium rolfsii, Sclerotinia sclerotiorum and S. minor were inoculated with the T. virens strain I10 GFP transformant or the wild type strain. Statistical analysis of percentages of decayed sclerotia showed that the transformation of the antagonistic isolate with the GFP reporter gene did not modify mycoparasitic activity against sclerotia. Sclerotium colonization was followed by fluorescent microscopy revealing intracellular growth of the antagonist in the cortex (S. rolfsii) and inter-cellular growth in the medulla (S. rolfsii, and S. sclerotiorum). The uniformly distributed mycelium of T. virens just beneath the rind of sclerotia of both S. rolfsii and S. sclerotiorum suggests that the sclerotia became infected at numerous randomly distributed locations without any preferential point of entry.  相似文献   
145.
Crop yields in sub‐Saharan Africa remain stagnant at 1 ton ha?1, and 260 million people lack access to adequate food resources. Order‐of‐magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two‐month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha?1, NO emissions increased without a concomitant increase in yields. We used the geos‐chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4‐hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha?1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha?1 during the March–April–May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.  相似文献   
146.
The food-borne pathogen Listeria monocytogenes is a problem for food processors and consumers alike, as the organism is resistant to harsh environmental conditions and inimical barriers implemented to prevent the survival and/or growth of harmful bacteria. One mechanism by which listeriae mediate survival is through the accumulation of compatible solutes, such as proline, betaine and carnitine. In other bacteria, including Escherichia coli, the synthesis and accumulation of another compatible solute, trehalose, are known to aid in the survival of stressed cells. The objective of this research was to investigate trehalose metabolism in L. monocytogenes, where the sugar is thought to be transferred across the cytoplasmic membrane via a specific phosphoenolpyruvate phosphotransferase system and phosphorylation to trehalose-6-phosphate (T6P). The latter is subsequently broken down into glucose and glucose-6-phosphate by α,α-(1,1) phosphotrehalase, the putative product of the treA gene. Here we report on an isogenic treA mutant of L. monocytogenes 568 (568:ΔTreA) which, relative to the wild-type strain, displays increased tolerances to multiple stressors, including heat, high osmolarity, and desiccation. This is the first study to examine the putative trehalose operon in L. monocytogenes, and we demonstrate that lmo1254 (treA) in L. monocytogenes 568 indeed encodes a phosphotrehalase required for the hydrolysis of T6P. Disruption of the treA gene results in the accumulation of T6P which is subsequently dephosphorylated to trehalose in the cytosol, thereby contributing to the stress hardiness observed in the treA mutant. This study highlights the importance of compatible solutes for microbial survival in adverse environments.  相似文献   
147.
Human killer cell immunoglobulin-like receptors (KIR) recognize A3/11, Bw4, C1, and C2 epitopes carried by mutually exclusive subsets of human leukocyte antigen (HLA)-A, -B, and -C allotypes. Chimpanzee and orangutan have counterparts to HLA-A, -B, and -C, and KIR that recognize the A3/11, Bw4, C1, and C2 epitopes, either individually or in combination. Because rhesus macaque has counterparts of HLA-A and -B, but not HLA-C, we expected that rhesus KIR would better recognize HLA-A and -B, than HLA-C. Comparison of the interactions of nine rhesus KIR3D with 95 HLA isoforms, showed the KIR have broad specificity for HLA-A, -B, and -C, but vary in avidity. Considering both the strength and breadth of reaction, HLA-C was the major target for rhesus KIR, followed by HLA-B, then HLA-A. Strong reactions with HLA-A were restricted to the minority of allotypes carrying the Bw4 epitope, whereas strong reactions with HLA-B partitioned between allotypes having and lacking Bw4. Contrasting to HLA-A and -B, every HLA-C allotype bound to the nine rhesus KIR. Sequence comparison of high- and low-binding HLA allotypes revealed the importance of polymorphism in the helix of the α1 domain and the peptide-binding pockets. At peptide position 9, nonpolar residues favor binding to rhesus KIR, whereas charged residues do not. Contrary to expectation, rhesus KIR bind more effectively to HLA-C, than to HLA-A and -B. This property is consistent with major histocompatibility complex (MHC)-C having evolved in hominids to be a generally superior ligand for KIR than MHC-A and MHC-B.  相似文献   
148.
Census (N(C)) and effective population size (N(e)) were estimated for a lake-resident population of brown trout Salmo trutta as 576 and 63, respectively. The point estimate of the ratio of effective to census population size (N(e):N(C)) for this population is 0.11 with a range of 0.06-0.26, suggesting that N(e):N(C) ratio for lake-resident populations agree more with estimates for fishes with anadromous life histories than the small ratios observed in many marine fishes.  相似文献   
149.
Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood. Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry, particularly when it comes to up-scaling of processes based on insoluble feed stocks.  相似文献   
150.

Background

Detection of congenital T. cruzi transmission is considered one of the pillars of control programs of Chagas disease. Congenital transmission accounts for 25% of new infections with an estimated 15,000 infected infants per year. Current programs to detect congenital Chagas disease in Latin America utilize microscopy early in life and serology after 6 months. These programs suffer from low sensitivity by microscopy and high loss to follow-up later in infancy. We developed a Chagas urine nanoparticle test (Chunap) to concentrate, preserve and detect T. cruzi antigens in urine for early, non-invasive diagnosis of congenital Chagas disease.

Methodology/Principal Findings

This is a proof-of-concept study of Chunap for the early diagnosis of congenital Chagas disease. Poly N-isopropylacrylamide nano-particles functionalized with trypan blue were synthesized by precipitation polymerization and characterized with photon correlation spectroscopy. We evaluated the ability of the nanoparticles to capture, concentrate and preserve T. cruzi antigens. Urine samples from congenitally infected and uninfected infants were then concentrated using these nanoparticles. The antigens were eluted and detected by Western Blot using a monoclonal antibody against T. cruzi lipophosphoglycan. The nanoparticles concentrate T. cruzi antigens by 100 fold (western blot detection limit decreased from 50 ng/ml to 0.5 ng/ml). The sensitivity of Chunap in a single specimen at one month of age was 91.3% (21/23, 95% CI: 71.92%–98.68%), comparable to PCR in two specimens at 0 and 1 month (91.3%) and significantly higher than microscopy in two specimens (34.8%, 95% CI: 16.42%–57.26%). Chunap specificity was 96.5% (71/74 endemic, 12/12 non-endemic specimens). Particle-sequestered T. cruzi antigens were protected from trypsin digestion.

Conclusion/Significance

Chunap has the potential to be developed into a simple and sensitive test for the early diagnosis of congenital Chagas disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号