全文获取类型
收费全文 | 10707篇 |
免费 | 974篇 |
国内免费 | 3篇 |
专业分类
11684篇 |
出版年
2023年 | 44篇 |
2022年 | 116篇 |
2021年 | 244篇 |
2020年 | 127篇 |
2019年 | 168篇 |
2018年 | 214篇 |
2017年 | 180篇 |
2016年 | 319篇 |
2015年 | 524篇 |
2014年 | 544篇 |
2013年 | 617篇 |
2012年 | 867篇 |
2011年 | 811篇 |
2010年 | 518篇 |
2009年 | 471篇 |
2008年 | 639篇 |
2007年 | 642篇 |
2006年 | 601篇 |
2005年 | 599篇 |
2004年 | 577篇 |
2003年 | 516篇 |
2002年 | 491篇 |
2001年 | 127篇 |
2000年 | 98篇 |
1999年 | 148篇 |
1998年 | 138篇 |
1997年 | 92篇 |
1996年 | 74篇 |
1995年 | 87篇 |
1994年 | 73篇 |
1993年 | 74篇 |
1992年 | 78篇 |
1991年 | 62篇 |
1990年 | 74篇 |
1989年 | 64篇 |
1988年 | 58篇 |
1987年 | 55篇 |
1986年 | 48篇 |
1985年 | 39篇 |
1984年 | 41篇 |
1983年 | 27篇 |
1982年 | 27篇 |
1981年 | 23篇 |
1980年 | 20篇 |
1978年 | 25篇 |
1977年 | 16篇 |
1976年 | 19篇 |
1974年 | 23篇 |
1973年 | 21篇 |
1972年 | 17篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Srabasti Acharya Brian M. Safaie Piriya Wongkongkathep Magdalena I. Ivanova Aida Attar Frank-Gerrit Kl?rner Thomas Schrader Joseph A. Loo Gal Bitan Lisa J. Lapidus 《The Journal of biological chemistry》2014,289(15):10727-10737
Recent work on α-synuclein has shown that aggregation is controlled kinetically by the rate of reconfiguration of the unstructured chain, such that the faster the reconfiguration, the slower the aggregation. In this work we investigate this relationship by examining α-synuclein in the presence of a small molecular tweezer, CLR01, which binds selectively to Lys side chains. We find strong binding to multiple Lys within the chain as measured by fluorescence and mass-spectrometry and a linear increase in the reconfiguration rate with concentration of the inhibitor. Top-down mass-spectrometric analysis shows that the main binding of CLR01 to α-synuclein occurs at the N-terminal Lys-10/Lys-12. Photo-induced cross-linking of unmodified proteins (PICUP) analysis shows that under the conditions used for the fluorescence analysis, α-synuclein is predominantly monomeric. The results can be successfully modeled using a kinetic scheme in which two aggregation-prone monomers can form an encounter complex that leads to further oligomerization but can also dissociate back to monomers if the reconfiguration rate is sufficiently high. Taken together, the data provide important insights into the preferred binding site of CLR01 on α-synuclein and the mechanism by which the molecular tweezer prevents self-assembly into neurotoxic aggregates by α-synuclein and presumably other amyloidogenic proteins. 相似文献
202.
P. Mark Hogarth Margaret L. Hibbs Lisa Bonadonna Bernadette M. Scott Ewa Witort Geoffrey A. Pietersz Ian F. C. McKenzie 《Immunogenetics》1987,26(3):161-168
A cDNA clone encoding the mouse Ly-17+ Fc receptor for IgG, isolated from a myelomonocytic cell line, was sequenced and expression of mRNA and the functional FcR investigated. The receptor is a 301 amino acid transmembrane glycoprotein with two homologous extracellular domains that are also homologous to members of the Ig superfamily. The receptor has four sites of N-linked glycosylation and a long 94 amino acid cytoplasmic tail. Northern analysis, immune complex binding, and serological studies demonstrate that the receptor encoded by the cDNA clone binds mouse IgG1/2b and rabbit IgG complexes. 相似文献
203.
Samantha F. Friend Lisa K. Peterson Eric Treacy Adrianne L. Stefanski Tomasz Sosinowski Nathan D. Pennock Allison J. Berger Virginia D. Winn Leonard L. Dragone 《PloS one》2013,8(10)
While neddylation is known to activate cullin (CUL)-RING ubiquitin ligases (CRLs), its role in regulating T cell signaling is poorly understood. Using the investigational NEDD8 activating enzyme (NAE) inhibitor, MLN4924, we found that neddylation negatively regulates T cell receptor (TCR) signaling, as its inhibition increases IL-2 production, T cell proliferation and Treg development in vitro. We also discovered that loss of CUL neddylation occurs upon TCR signaling, and CRLs negatively regulate IL-2 production. Additionally, we found that tyrosine kinase signaling leads to CUL deneddylation in multiple cell types. These studies indicate that CUL neddylation is a global regulatory mechanism for tyrosine kinase signaling. 相似文献
204.
As part of a cell's inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation), and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late-onset breast cancer in estrogen responsive breast cancers and/or the recurrence of more aggressive breast cancer post-therapy. 相似文献
205.
Lisa Sanchez Barbara Courteaux Jane Hubert Serge Kauffmann Jean-Hugues Renault Christophe Cl��ment Fabienne Baillieul St��phan Dorey 《Plant physiology》2012,160(3):1630-1641
Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.In their environment, plants are challenged by potentially pathogenic microorganisms. In response, they express a set of defense mechanisms including preformed structural and chemical barriers, as well as an innate immune response quickly activated after microorganism perception (Boller and Felix, 2009). Plant innate immunity is triggered after recognition by pattern recognition receptors of conserved pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively) or by plant endogenous molecules released by pathogen invasion and called danger-associated molecular patterns (Boller and Felix, 2009; Dodds and Rathjen, 2010). This first step of recognition leads to the activation of MAMP-triggered immunity (MTI). Successful pathogens can secrete effectors that interfere or suppress MTI, resulting in effector-triggered susceptibility. A second level of perception involves the direct or indirect recognition by specific receptors of pathogen effectors leading to effector-triggered immunity (ETI; Boller and Felix, 2009; Dodds and Rathjen, 2010). Whereas MTI and ETI are thought to involve common signaling network, ETI is usually quantitatively stronger than MTI and associated with more sustained and robust immune responses (Katagiri and Tsuda, 2010; Tsuda and Katagiri, 2010).The plant hormones, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) have emerged as key players in the signaling networks involved in MTI and ETI (Robert-Seilaniantz et al., 2007; Tsuda et al., 2009; Katagiri and Tsuda, 2010; Mersmann et al., 2010; Tsuda and Katagiri, 2010; Robert-Seilaniantz et al., 2011). Interactions between these signal molecules allow the plant to activate and/or modulate an appropriate spectrum of responses, depending on the pathogen lifestyle, necrotroph or biotroph (Glazebrook, 2005; Koornneef and Pieterse, 2008). It is assumed that JA and ET signaling pathways are important for resistance to necrotrophic fungi including Botrytis cinerea and Alternaria brassicicola (Thomma et al., 2001; Ferrari et al., 2003; Glazebrook, 2005). Infection of Arabidopsis (Arabidopsis thaliana) with B. cinerea causes the induction of the JA/ET responsive gene PLANT DEFENSIN1.2 (PDF1.2; Penninckx et al., 1996; Zimmerli et al., 2001). Induction of PDF1.2 by B. cinerea is blocked in ethylene-insensitive2 (ein2) and coronatine-insensitive1 (coi1) mutants that are respectively defective in ET and JA signal transduction pathways. Moreover, ein2 and coi1 plants are highly susceptible to B. cinerea infection (Thomma et al., 1998; Thomma et al., 1999). JA/ET-dependent responses do not seem to be usually induced during resistance to biotrophs, but they can be effective if they are stimulated prior to pathogen challenge (Glazebrook, 2005). Plants impaired in SA signaling are highly susceptible to biotrophic and hemibiotrophic pathogens. Following pathogen infection, SA hydroxylase (NahG), enhanced disease susceptibility5 (eds5), or SA induction-deficient2 (sid2) plants are unable to accumulate high SA levels and they display heightened susceptibility to Pseudomonas syringae pv tomato (Pst), Hyaloperonospora arabidopsidis, or Erysiphe orontii (Delaney et al., 1994; Lawton et al., 1995; Wildermuth et al., 2001; Nawrath et al., 2002; Vlot et al., 2009). Mutants that are insensitive to SA, such as nonexpressor of PATHOGENESIS-RELATED (PR) genes1 (npr1), have enhanced susceptibility to these pathogens (Cao et al., 1994; Glazebrook et al., 1996; Shah et al., 1997; Dong, 2004). According to some reports, plant defense against necrotrophs also involves SA. Arabidopsis plants expressing the nahG gene and infected with B. cinerea show larger lesions compared with wild-type plants (Govrin and Levine, 2002). In tobacco (Nicotiana tabacum), acidic isoforms of PR3 and PR5 gene that are specifically induced by SA (Ménard et al., 2004) are up-regulated after challenge by B. cinerea (El Oirdi et al., 2010). Resistance to some necrotrophs like Fusarium graminearum involves both SA and JA signaling pathways (Makandar et al., 2010). It is assumed that SA and JA signaling can be antagonistic (Bostock, 2005; Koornneef and Pieterse, 2008; Pieterse et al., 2009; Thaler et al., 2012). In Arabidopsis, SA inhibits JA-dependent resistance against A. brassicicola or B. cinerea (Spoel et al., 2007; Koornneef et al., 2008). Recent studies demonstrated that ET modulates the NPR1-mediated antagonism between SA and JA (Leon-Reyes et al., 2009; Leon-Reyes et al., 2010a) and suppression by SA of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway (Leon-Reyes et al., 2010b). Synergistic effects of SA- and JA-dependent signaling are also well documented (Schenk et al., 2000; van Wees et al., 2000; Mur et al., 2006) and induction of some defense responses after pathogen challenge requires intact JA, ET, and SA signaling pathways (Campbell et al., 2003).Isolated MAMPs trigger defense responses that also require the activation of SA, JA, and ET signaling pathways (Tsuda et al., 2009; Katagiri and Tsuda, 2010). For instance, treatment with the flagellin peptide flg22 induces many SA-related genes including SID2, EDS5, NPR1, and PR1 (Ferrari et al., 2007; Denoux et al., 2008), causes SA accumulation (Tsuda et al., 2008; Wang et al., 2009), and activates ET signaling (Bethke et al., 2009; Mersmann et al., 2010). Local application of lipopolysaccharides elevates the level of SA (Mishina and Zeier, 2007). The oomycete Pep13 peptide induces defense responses in potato (Solanum tuberosum) that require both SA and JA (Halim et al., 2009). Although signaling networks induced by isolated MAMPs are well documented, the contribution of SA, JA, and ET in MAMP- or PAMP-induced resistance to biotrophs and necrotrophs is poorly understood.Rhamnolipids (RLs) are glycolipids produced by various bacteria species including some Pseudomonas and Burkholderia species. They are essential for bacterial surface motility and biofilm development (Vatsa et al., 2010; Chrzanowski et al., 2012). RLs are potent stimulators of animal immunity (Vatsa et al., 2010). They have recently been shown to elicit plant defense responses and to induce resistance against B. cinerea in grapevine (Vitis vinifera; Varnier et al., 2009). They also participate to biocontrol activity of the plant beneficial bacteria Pseudomonas aeruginosa PNA1 against oomycetes (Perneel et al., 2008). However, the signaling pathways used by RLs to stimulate plant innate immunity are not known. To gain more insights into RL-induced MTI, we investigated RL-triggered defense responses and resistance to the necrotrophic fungus B. cinerea, the biotroph oomycete H. arabidopsidis, and the hemibiotroph bacterium Pst in Arabidopsis. Our results show that RLs trigger an innate immune response in Arabidopsis that protects the plant against these different lifestyle pathogens. We demonstrate that RL-mediated resistance involves separated signaling sectors that depend on the type of pathogen. In plants challenged by RLs, SA has a central role and participates to the restriction of the three pathogens. ET is fully involved in RL-induced resistance to the biotrophic oomycete and to the hemibiotrophic bacterium whereas JA is essential for the resistance to the necrotrophic fungus. 相似文献
206.
Studies on the ecology of microbial parasites and their hosts are predicated on understanding the assemblage of and relationship among the species present. Changes in organismal morphology and physiology can have profound effects on host–parasite interactions and associated microbial community structure. The marine rickettsial organism, “Candidatus Xenohaliotis californiensis” (WS-RLO), that causes withering syndrome of abalones has had a consistent morphology based on light and electron microscopy. However, a morphological variant of the WS-RLO has recently been observed infecting red abalone from California. We used light and electron microscopy, in situ hybridization and16S rDNA sequence analysis to compare the WS-RLO and the morphologically distinct RLO variant (RLOv). The WS-RLO forms oblong inclusions within the abalone posterior esophagus (PE) and digestive gland (DG) tissues that contain small rod-shaped bacteria; individual bacteria within the light purple inclusions upon hematoxylin and eosin staining cannot be discerned by light microscopy. Like the WS-RLO, the RLOv forms oblong inclusions in the PE and DG but contain large, pleomorphic bacteria that stain dark navy blue with hematoxylin and eosin. Transmission electron microscopy (TEM) examination revealed that the large pleomorphic bacteria within RLOv inclusions were infected with a spherical to icosahedral-shaped putative phage hyperparasite. TEM also revealed the presence of rod-shaped bacteria along the periphery of the RLOv inclusions that were morphologically indistinguishable from the WS-RLO. Binding of the WS-RLO-specific in situ hybridization probe to the RLOv inclusions demonstrated sequence similarity between these RLOs. In addition, sequence analysis revealed 98.9–99.4 % similarity between 16S rDNA sequences of the WS-RLO and RLOv. Collectively, these data suggest that both of these RLOs infecting California abalone are “Candidatus Xenohaliotis californiensis,” and that the novel variant is infected by a putative phage hyperparasite that induced morphological variation of its RLO host. 相似文献
207.
208.
Amphibian defenses against ultraviolet-B radiation 总被引:4,自引:0,他引:4
As part of an overall decline in biodiversity, amphibian populations throughout the world are disappearing. There are a number of potential causes for these declines, including those related to environmental changes such as increasing ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion. UV-B radiation can kill amphibian embryos or can cause sublethal effects that can harm amphibians in later life stages. However, amphibians have defenses against UV-B damage that can limit damage or repair it after exposure to UV-B radiation. These include behavioral, physiological, and molecular defenses. These defenses differ interspecifically, with some species more able to cope with exposure to UV-B than others. Unfortunately, the defense mechanisms of many species may not be effective against increasing persistent levels of UV-B radiation that have only been present for the past several decades due to human-induced environmental damage. Moreover, we predict that persistent UV-B-induced mortality and sublethal damage in species without adequate defenses could lead to changes in community structure. In this article we review the effects of UV-B radiation on amphibians and the defenses they use to avoid solar radiation and make some predictions regarding community structure in light of interspecific differences in UV-B tolerance. 相似文献
209.
We present a method for the determination of triacylglycerol (TAG) profiles of oleaginous saltwater microalgae relevant for the production of biofuels, bioactive lipids, and high-value lipid-based chemical precursors. We describe a technique to remove chlorophyll using quick, simple solid phase extraction (SPE) and directly compare the intact TAG composition of four microalgae species (Phaeodactylum tricornutum, Nannochloropsis salina, Nannochloropsis oculata, and Tetraselmis suecica) using MALDI time-of-flight (TOF) mass spectrometry (MS), ESI linear ion trap-orbitrap (LTQ Orbitrap) MS, and 1H NMR spectroscopy. Direct MS analysis is particularly effective to compare the polyunsaturated fatty acid (PUFA) composition for triacylglycerols because oxidation can often degrade samples upon derivatization. Using these methods, we observed that T. suecica contains significant PUFA levels with respect to other microalgae. This method is applicable for high-throughput MS screening of microalgae TAG profiles and may aid in the commercial development of biofuels. 相似文献
210.
Oxford KL Strelow L Yue Y Chang WL Schmidt KA Diamond DJ Barry PA 《Journal of virology》2011,85(10):5105-5114
Implicit with the use of animal models to test human cytomegalovirus (HCMV) vaccines is the assumption that the viral challenge of vaccinated animals reflects the anticipated virus-host interactions following exposure of vaccinated humans to HCMV. Variables of animal vaccine studies include the route of exposure to and the titer of challenge virus, as well as the genomic coding content of the challenge virus. This study was initiated to provide a better context for conducting vaccine trials with nonhuman primates by determining whether the in vivo phenotype of culture-passaged strains of rhesus cytomegalovirus (RhCMV) is comparable to that of wild-type RhCMV (RhCMV-WT), particularly in relation to the shedding of virus into bodily fluids and the potential for horizontal transmission. Results of this study demonstrate that two strains containing a full-length UL/b' region of the RhCMV genome, which encodes proteins involved in epithelial tropism and immune evasion, were persistently shed in large amounts in bodily fluids and horizontally transmitted, whereas a strain lacking a complete UL/b' region was not shed or transmitted to cagemates. Shedding patterns exhibited by strains encoding a complete UL/b' region were consistent with patterns observed in naturally infected monkeys, the majority of whom persistently shed high levels of virus in saliva for extended periods of time after seroconversion. Frequent viral shedding contributed to a high rate of infection, with RhCMV-infected monkeys transmitting virus to one na?ve animal every 7 weeks after introduction of RhCMV-WT into an uninfected cohort. These results demonstrate that the RhCMV model can be designed to rigorously reflect the challenges facing HCMV vaccine trials, particularly those related to horizontal transmission. 相似文献