首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9600篇
  免费   837篇
  国内免费   1篇
  2023年   34篇
  2022年   91篇
  2021年   234篇
  2020年   116篇
  2019年   158篇
  2018年   192篇
  2017年   168篇
  2016年   305篇
  2015年   491篇
  2014年   517篇
  2013年   566篇
  2012年   799篇
  2011年   766篇
  2010年   475篇
  2009年   439篇
  2008年   586篇
  2007年   601篇
  2006年   546篇
  2005年   548篇
  2004年   508篇
  2003年   479篇
  2002年   446篇
  2001年   94篇
  2000年   66篇
  1999年   116篇
  1998年   117篇
  1997年   77篇
  1996年   65篇
  1995年   60篇
  1994年   57篇
  1993年   60篇
  1992年   68篇
  1991年   51篇
  1990年   56篇
  1989年   36篇
  1988年   39篇
  1987年   38篇
  1986年   30篇
  1985年   25篇
  1984年   27篇
  1983年   17篇
  1982年   27篇
  1981年   21篇
  1979年   11篇
  1978年   13篇
  1974年   18篇
  1972年   15篇
  1971年   15篇
  1969年   11篇
  1967年   17篇
排序方式: 共有10000条查询结果,搜索用时 256 毫秒
991.
T cell involvement in Ab responses to thymus-independent type 2 Ags is an immunologic enigma. The identity of these cells and the mechanisms of their TCR engagement to carbohydrate molecules remain unknown. We measured IgG Ab production after immunization with pneumococcal polysaccharides in mice with disruptions in selected genes of the T cell pathway. Nonclassical MHC class I-like CD1 molecules and MHC class I-dependent CD8+ cells were found to be essential. Our findings set forth a new paradigm for humoral responses in which CD1 expression as well as a subset of CD8+ cells are required to provide helper function for Ab production against thymus-independent type 2 polysaccharides, similar to MHC class II-restricted CD4+ cells for protein Ags.  相似文献   
992.
The src homology 2 domain-containing tyrosine phosphatase 2 (SHP2) plays an important role in development and in growth factor receptor signaling pathways, yet little is known of its role in the immune system. We generated mice expressing a dominant-negative version of the protein, SHP2(CS), specifically in T cells. In SHP2(CS) mice, T cell development appears normal with regard to both negative and positive selection. However, SHP2(CS) T cells express higher levels of activation markers, and aged mice have elevated serum Abs. This is associated with a marked increase in IL-4, IL-5, and IL-10 secretion by SHP2(CS) T cells in vitro. In addition, primary thymus-dependent B cell responses are deficient in SHP2(CS) mice. We show that whereas TCR-induced linker for activation of T cells phosphorylation is defective, CTLA-4 and programmed death-1 signaling are not affected by SHP2(CS) expression. Our results suggest that a key action of wild-type SHP2 is to suppress differentiation of T cells to the Th2 phenotype.  相似文献   
993.
CD4+ Th1 cells produce IFN-gamma, TNF-alpha, and IL-2. These Th1 cytokines play critical roles in both protective immunity and inflammatory responses. In this study we report that sphingosine kinase 1 (SPHK1), but not SPHK2, is highly expressed in DO11.10 Th1 cells. The expression of SPHK1 in Th1 cells requires TCR signaling and new protein synthesis. SPHK1 phosphorylates sphingosine to form sphingosine-1-phosphate. Sphingosine-1-phosphate plays important roles in inhibition of apoptosis, promotion of cell proliferation, cell migration, calcium mobilization, and activation of ERK1/2. When SPHK1 expression was knocked down by SPHK1 short interfering RNA, the production of IL-2, TNF-alpha, and IFN-gamma by Th1 cells in response to TCR stimulation was enhanced. Consistently, overexpression of dominant-negative SPHK1 increased the production of IL-2, TNF-alpha, and IFN-gamma in Th1 cells. Furthermore, overexpression of SPHK1 in Th1 and Th0 cells decreased the expression of IL-2, TNF-alpha, and IFN-gamma. Several chemokines, including Th2 chemokines CCL17 and CCL22, were up-regulated by SPHK1 short interfering RNA and down-regulated by overexpression of SPHK1. We also showed that Th2 cells themselves express CCL17 and CCL22. Finally, we conclude that SPHK1 negatively regulates the inflammatory responses of Th1 cells by inhibiting the production of proinflammatory cytokines and chemokines.  相似文献   
994.
995.
We have previously shown that Actinobacillus actinomycetemcomitans produces an immunosuppressive factor encoded by the cytolethal distending toxin (cdt)B gene. In this study, we used rCdt peptides to study the contribution of each subunit to toxin activity. As previously reported, CdtB is the only Cdt subunit that is capable of inducing cell cycle arrest by itself. Although CdtA and CdtC do not exhibit activity alone, each subunit is able to significantly enhance the ability of CdtB to induce G2 arrest in Jurkat cells; these effects were dependent upon protein concentration. Moreover, the combined addition of both CdtA and CdtC increased the ED50 for CdtB >7000-fold. In another series of experiments, we demonstrate that the three Cdt peptides are able to form a functional toxin unit on the cell surface. However, these interactions first require that a complex forms between the CdtA and CdtC subunits, indicating that these peptides are required for interaction between the cell and the holotoxin. This conclusion is further supported by experiments in which both Jurkat cells and normal human lymphocytes were protected from Cdt holotoxin-induced G2 arrest by pre-exposure to CdtA and CdtC. Finally, we have used optical biosensor technology to show that CdtA and CdtC have a strong affinity for one another (10(-7) M). Furthermore, although CdtB is unable to bind to either CdtA or CdtC alone, it is capable of forming a stable complex with CdtA/CdtC. The implications of our results with respect to the function and structure of the Cdt holotoxin are discussed.  相似文献   
996.
Humanized mouse models are useful tools to explore the functional and regulatory differences between human and murine orthologous genes. We have combined a bioinformatics approach and an in vivo approach to assess the functional and regulatory differences between the human and mouse ABCA1 genes. Computational analysis identified significant differences in potential regulatory sites between the human and mouse genes. The effect of these differences was assessed in vivo, using a bacterial artificial chromosome transgenic humanized ABCA1 mouse model that expresses the human gene in the absence of mouse ABCA1. Humanized mice expressed human ABCA1 protein at levels similar to wild-type mice and fully compensated for cholesterol efflux activity and lipid levels seen in ABCA1-deficient mice. Liver X receptor agonist administration resulted in significant increases in HDL values associated with parallel increases in the hepatic ABCA1 protein and mRNA levels in the humanized ABCA1 mice, as seen in the wild-type animals. Our studies indicate that despite differences in potential regulatory regions, the human ABCA1 gene is able to functionally fully compensate for the mouse gene. Our humanized ABCA1 mice can serve as a useful model system for functional analysis of the human ABCA1 gene in vivo and can be used for the generation of potential new therapeutics that target HDL metabolism.  相似文献   
997.
Yeast cells harvested from aerobic or anaerobic culture are able to synthesize considerable amounts of Zn-protoporphyrin, by aeration of resting cells in phosphate buffer (pH 8).

In yeast cells harvested from aerobic growth, Zn-protoporphyrin accumulation inhibits respiratory activity and produces some letality. In yeast cells harvested from anaerobic growth this accumulation produces both a strong inhibition of cytochrome biosynthesis and of respiratory adaptation, accompanied by an important letality.

Zn-protoporphyrin is accumulated into the mitochondrial fraction and causes a total inhibition of O2 consumption by isolated mitochondria. The “in vitro” addition of purified Zn-protoporphyrin to intact mitochondria induces a lost of respiratory control.  相似文献   

998.
999.
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.  相似文献   
1000.
A novel xyloglucan-specific endo-β-1,4-glucanase (XEG), xyloglucanase, with a molecular mass of 80 kDa and a pI of 4.8, was isolated from the fungus Geotrichum sp. M128. It was found to be an endoglucanase active toward xyloglucan and not active toward carboxymethylcellulose, Avicel, or barley 1,3-1,4-β-glucan. Analysis of the precise substrate specificity using various xyloglucan oligosaccharide structures revealed that XEG has at least four subsites (−2 to +2) and specifically recognizes xylose branching at the +1 and +2 sites. The full-length cDNA encoding XEG was cloned and sequenced. It consists of a 2436-bp open reading frame encoding a 776-amino acid protein. From its deduced amino acid sequence, XEG can be classified as a family 74 glycosyl hydrolase. The cDNA encoding XEG was then expressed in Escherichia coli, and enzymatically active recombinant XEG was obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号