首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8930篇
  免费   769篇
  国内免费   1篇
  2024年   12篇
  2023年   39篇
  2022年   109篇
  2021年   228篇
  2020年   113篇
  2019年   152篇
  2018年   188篇
  2017年   161篇
  2016年   291篇
  2015年   469篇
  2014年   508篇
  2013年   545篇
  2012年   775篇
  2011年   736篇
  2010年   459篇
  2009年   423篇
  2008年   568篇
  2007年   569篇
  2006年   531篇
  2005年   535篇
  2004年   491篇
  2003年   457篇
  2002年   429篇
  2001年   73篇
  2000年   50篇
  1999年   104篇
  1998年   111篇
  1997年   71篇
  1996年   56篇
  1995年   58篇
  1994年   47篇
  1993年   51篇
  1992年   40篇
  1991年   31篇
  1990年   38篇
  1989年   26篇
  1988年   28篇
  1987年   19篇
  1986年   16篇
  1985年   15篇
  1984年   18篇
  1983年   12篇
  1982年   11篇
  1981年   11篇
  1980年   3篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
排序方式: 共有9700条查询结果,搜索用时 15 毫秒
921.
Naive T cells proliferate in response to self MHC molecules after transfer into lymphopenic hosts, a process that has been termed homeostatic proliferation (HP). Previous studies have demonstrated that HP is driven by low level signaling induced by interactions with the same MHC molecules responsible for positive selection in the thymus. Little is known about the homeostatic regulation of T cells specific for class Ib molecules, including Qa-1 and H2-M3, though it has been suggested that their capacity to undergo homeostatic expansion may be inherently limited. In this study, we demonstrate that naive 6C5 TCR transgenic T cells with specificity for Qa-1(b) have a capacity similar to conventional T cells to undergo HP after transfer into sublethally irradiated mice. Proliferation was largely dependent on the expression of beta(2)-microglobulin, and experiments with congenic recipients expressing Qa-1(a) instead of Qa-1(b) demonstrated that HP is specifically driven by Qa-1(b) and not through cross-recognition of classical class I molecules. Thus, the same MHC molecule that mediates positive selection of 6C5 T cells is also required for HP. Homeostatic expansion, like positive selection, occurs in the absence of a Qa-1 determinant modifier, the dominant self-peptide bound to Qa-1 molecules. However, experiments with TAP(-/-) recipients demonstrate a clear distinction between the ligand requirements for thymic selection and HP. Positive selection of 6C5 T cells is dependent on TAP function, thus selection is presumably mediated by TAP-dependent peptides. By contrast, HP occurs in TAP(-/-) recipients, providing an example where the ligand requirements for HP are less stringent than for thymic selection.  相似文献   
922.
Protelomerases are enzymes responsible for the generation of closed hairpin ends in linear DNA. It is proposed that they use a breaking-and-rejoin type mechanism to affect DNA rearrangement on specific DNA sequences. In doing so, one strand turns around and becomes the complementary strand. Using the purified enzyme from the Escherichia coli phage N15 and the Klebsiella phage phiKO2 and synthetic oligonucleotide substrates, we directly demonstrate the location where the cutting/re-ligation occurs. We identified a pair of transient staggered cleavages six base-pairs apart centered around the axis of dyad symmetry of the target site. Two molecules of the protelomerase form a pair of protein-linked DNA intermediates at each 3' end of the cleaved openings leaving a 5'-OH. Then, in a process not yet clearly defined, the partners of the two initial openings are exchanged, and the transient breaks are resealed to generate hairpin ends. The formation of 3'-covalent DNA-protein intermediates is a hallmark of the topoisomerase IB type reaction, and we have thus shown experimentally that protelomerase is a member of the tyrosine-recombinase superfamily. In addition, by introducing single nicks in the substrates as perturbation, we found that the integrity of the nucleotide chain 4 bp away from the cutting site as well as this nucleotide's complementary location on the stem if the strands were to fold into a cruciform structure are required for activity, suggesting that these locations may be important substrate-protein contacts. We determined that N15 and phiKO2 protelomerases are monomers in solution and two molecules are needed to interact with the substrate to form two closed hairpin products. The target sites of protelomerases invariably consist of inverted repeats. Comparative studies using the related target sites of different protelomerases suggest that these proteins may require both sequence-specific and structure (possibly cruciform)-specific recognition for activity.  相似文献   
923.
924.
The SIR (susceptible-infectious-resistant) and SIS (susceptible-infectious-susceptible) frameworks for infectious disease have been extensively studied and successfully applied. They implicitly assume the upper and lower limits of the range of possibilities for host immune response. However, the majority of infections do not fall into either of these extreme categories. We combine two general avenues that straddle this range: temporary immune protection (immunity wanes over time since infection), and partial immune protection (immunity is not fully protective but reduces the risk of reinfection). We present a systematic analysis of the dynamics and equilibrium properties of these models in comparison to SIR and SIS, and analyse the outcome of vaccination programmes. We describe how the waning of immunity shortens inter-epidemic periods, and poses major difficulties to disease eradication. We identify a "reinfection threshold" in transmission when partial immunity is included. Below the reinfection threshold primary infection dominates, levels of infection are low, and vaccination is highly effective (approximately an SIR model). Above the reinfection threshold reinfection dominates, levels of infection are high, and vaccination fails to protect (approximately an SIS situation). This association between high prevalence of infection and vaccine failure emphasizes the problems of controlling recurrent infections in high-burden regions. However, vaccines that induce a better protection than natural infection have the potential to increase the reinfection threshold, and therefore constitute interventions with a surprisingly high capacity to reduce infection where reduction is most needed.  相似文献   
925.
We developed a rational approach to identify a site in the vesicular stomatitis virus (VSV) glycoprotein (G) that is exposed on the protein surface and tolerant of foreign epitope insertion. The foreign epitope inserted was the six-amino-acid sequence ELDKWA, a sequence in a neutralizing epitope from human immunodeficiency virus type 1. This sequence was inserted into six sites within the VSV G protein (Indiana serotype). Four sites were selected based on hydrophilicity and high sequence variability identified by sequence comparison with other vesiculovirus G proteins. The site showing the highest variability was fully tolerant of the foreign peptide insertion. G protein containing the insertion at this site folded correctly, was transported normally to the cell surface, had normal membrane fusion activity, and could reconstitute fully infectious VSV. The virus was neutralized by the human 2F5 monoclonal antibody that binds the ELDKWA epitope. Additional studies showed that this site in G protein tolerated insertion of at least 16 amino acids while retaining full infectivity. The three other insertions in somewhat less variable sequences interfered with VSV G folding and transport to the cell surface. Two additional insertions were made in a conserved sequence adjacent to a glycosylation site and near the transmembrane domain. The former blocked G-protein transport, while the latter allowed transport to the cell surface but blocked membrane fusion activity of G protein. Identification of an insertion-tolerant site in VSV G could be important in future vaccine and targeting studies, and the general principle might also be useful in other systems.  相似文献   
926.
The translation efficiency of an mRNA molecule is typically determined by its 5'- and/or 3'-untranslated regions (UTRs). Previously, we have found that the 3'-UTR of Turnip yellow mosaic virus (TYMV) RNA enhances translation synergistically with a 5' cap. Here, we use a luciferase reporter system in cowpea protoplasts to show that the 5' 217 nucleotides from TYMV genomic RNA enhance expression relative to a vector-derived 17-nucleotide 5'-UTR. Maximum expression was observed from RNAs with a cap and both 5' and 3' TYMV sequences. In paired reporter constructs, the 5' 217 nucleotides harboring the UTR and the first 43 or 41 codons of the two overlapping TYMV open reading frames (ORFs), ORF-69 and ORF-206, respectively, were fused in frame with the luciferase gene. This allowed expression from the initiation codon of each ORF (AUG69 and AUG206) to be monitored separately but from the normal sequence environment. Expression from both AUG codons was heavily dependent on a 5' cap, with a threefold-higher expression occurring from AUG69 than from AUG206 in the presence of the genomic 3'-UTR. Changes that interrupted the cap/3'-UTR synergy (i.e., removal of the cap or TYMV 3'-UTR) resulted in a higher proportion of initiation from AUG206. Mutation of the 3'-UTR to prevent aminoacylation, as well as deletion of 75% of the 5'-UTR, likewise resulted in a lower ratio of expression from AUG69 relative to AUG206. Mutation of each AUG initiation codon increased initiation from the other. Taken together, these results do not fully conform to the expectations of standard leaky ribosomal scanning and leave open the precise mechanism of ribosome commitment to AUG69 and AUG206. However, our observations do not support a recent proposal based on in vitro studies in which the 3'-UTR is proposed to direct cap-independent initiation specifically at AUG206 and not at AUG69 (S. Barends et al., Cell 112:123-129, 2003).  相似文献   
927.
928.
929.
Provisioning may act to cushion weaned young from dietary insufficiencyand errors during the period in which they are mastering complexforaging techniques or learning to identify appropriate dietaryitems. That is, young mammals who receive food from others maygain nutritional and/or informational benefits. I conducteda longitudinal study of 13 wild golden lion tamarins 11–56weeks of age in six groups to evaluate hypotheses regardingthe functions of provisioning. All members belonging to thisprimate taxonomic family (the Callitrichidae) are cooperativebreeders and are known to provision their young more frequentlythan do other primate species, except humans. My results, togetherwith experimental findings, suggest that juveniles receive bothnutritional and informational benefits from being provisioned.My juvenile study subjects received animal prey (invertebratesand small vertebrates) from others more frequently than plantresources (fruits and hardened exudates). Apparently difficult-to-handlefruits were more likely to be transferred than readily processedfruits. These results support the nutritional benefits hypothesisbecause the young received items, particularly lipid- and protein-richprey, that they might not otherwise have acquired. That juvenilesfed independently on, and were provisioned with, the same fruitson the same day is counterevidence to the nutritional benefitshypothesis, however. The informational benefits hypothesis wassupported because juveniles received a large variety of foods(including more than 20% of fruit species eaten) and receiveduncommon fruits that were easily acquired. Adults emitted food-offeringcalls to encourage the transfer of prey to juveniles, particularlywhen the prey was whole and alive.  相似文献   
930.
BACKGROUND: Scanning cytometry now has many of the features (and power) of multiparameter flow cytometry while keeping its own advantages as an imaging technology. Modern instruments combine capabilities of scanning cytometry with the ability to manipulate cells. A new technology, called LEAP (laser-enabled analysis and processing), offers a unique combination of capabilities in cell purification and selective macromolecule delivery (optoinjection). METHODS: LEAP-mediated cell purification and optoinjection effects were assessed in model experiments using adherent and suspension cell types and cell mixtures plated and processed at different densities. Optoinjection effects were visualized by delivering fluorescent dextrans into cells. Results were analyzed using the LEAP instrument's own imaging system as well as by fluorescence and confocal microscopy. RESULTS: Live cell samples (adherent and suspension) could be purified to 90-100% purity with 50-90% yield, causing minimal cell damage depending on the cell type and plating density. Nearly one hundred percent of the targeted cells of all cell types examined could be successfully optoinjected with dextrans of 3-70 kDa, causing no visual damage to the cells. Indirect optoinjection effects were observed on untargeted cells within 5-60 microm to targeted areas under conditions used here. CONCLUSIONS: LEAP provides solutions in cell purification and targeted macromolecule delivery for traditional and challenging applications where other methods fall short.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号