首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9665篇
  免费   852篇
  国内免费   1篇
  2024年   10篇
  2023年   36篇
  2022年   92篇
  2021年   241篇
  2020年   120篇
  2019年   162篇
  2018年   199篇
  2017年   169篇
  2016年   299篇
  2015年   486篇
  2014年   532篇
  2013年   569篇
  2012年   807篇
  2011年   765篇
  2010年   476篇
  2009年   433篇
  2008年   598篇
  2007年   596篇
  2006年   561篇
  2005年   568篇
  2004年   521篇
  2003年   494篇
  2002年   463篇
  2001年   109篇
  2000年   77篇
  1999年   125篇
  1998年   124篇
  1997年   88篇
  1996年   66篇
  1995年   71篇
  1994年   56篇
  1993年   62篇
  1992年   55篇
  1991年   48篇
  1990年   46篇
  1989年   40篇
  1988年   36篇
  1987年   32篇
  1986年   22篇
  1985年   31篇
  1984年   23篇
  1983年   20篇
  1982年   15篇
  1981年   17篇
  1980年   10篇
  1979年   18篇
  1978年   14篇
  1975年   10篇
  1971年   9篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
991.
992.
We have previously shown that Actinobacillus actinomycetemcomitans produces an immunosuppressive factor encoded by the cytolethal distending toxin (cdt)B gene. In this study, we used rCdt peptides to study the contribution of each subunit to toxin activity. As previously reported, CdtB is the only Cdt subunit that is capable of inducing cell cycle arrest by itself. Although CdtA and CdtC do not exhibit activity alone, each subunit is able to significantly enhance the ability of CdtB to induce G2 arrest in Jurkat cells; these effects were dependent upon protein concentration. Moreover, the combined addition of both CdtA and CdtC increased the ED50 for CdtB >7000-fold. In another series of experiments, we demonstrate that the three Cdt peptides are able to form a functional toxin unit on the cell surface. However, these interactions first require that a complex forms between the CdtA and CdtC subunits, indicating that these peptides are required for interaction between the cell and the holotoxin. This conclusion is further supported by experiments in which both Jurkat cells and normal human lymphocytes were protected from Cdt holotoxin-induced G2 arrest by pre-exposure to CdtA and CdtC. Finally, we have used optical biosensor technology to show that CdtA and CdtC have a strong affinity for one another (10(-7) M). Furthermore, although CdtB is unable to bind to either CdtA or CdtC alone, it is capable of forming a stable complex with CdtA/CdtC. The implications of our results with respect to the function and structure of the Cdt holotoxin are discussed.  相似文献   
993.
Humanized mouse models are useful tools to explore the functional and regulatory differences between human and murine orthologous genes. We have combined a bioinformatics approach and an in vivo approach to assess the functional and regulatory differences between the human and mouse ABCA1 genes. Computational analysis identified significant differences in potential regulatory sites between the human and mouse genes. The effect of these differences was assessed in vivo, using a bacterial artificial chromosome transgenic humanized ABCA1 mouse model that expresses the human gene in the absence of mouse ABCA1. Humanized mice expressed human ABCA1 protein at levels similar to wild-type mice and fully compensated for cholesterol efflux activity and lipid levels seen in ABCA1-deficient mice. Liver X receptor agonist administration resulted in significant increases in HDL values associated with parallel increases in the hepatic ABCA1 protein and mRNA levels in the humanized ABCA1 mice, as seen in the wild-type animals. Our studies indicate that despite differences in potential regulatory regions, the human ABCA1 gene is able to functionally fully compensate for the mouse gene. Our humanized ABCA1 mice can serve as a useful model system for functional analysis of the human ABCA1 gene in vivo and can be used for the generation of potential new therapeutics that target HDL metabolism.  相似文献   
994.
Yeast cells harvested from aerobic or anaerobic culture are able to synthesize considerable amounts of Zn-protoporphyrin, by aeration of resting cells in phosphate buffer (pH 8).

In yeast cells harvested from aerobic growth, Zn-protoporphyrin accumulation inhibits respiratory activity and produces some letality. In yeast cells harvested from anaerobic growth this accumulation produces both a strong inhibition of cytochrome biosynthesis and of respiratory adaptation, accompanied by an important letality.

Zn-protoporphyrin is accumulated into the mitochondrial fraction and causes a total inhibition of O2 consumption by isolated mitochondria. The “in vitro” addition of purified Zn-protoporphyrin to intact mitochondria induces a lost of respiratory control.  相似文献   

995.
996.
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.  相似文献   
997.
A novel xyloglucan-specific endo-β-1,4-glucanase (XEG), xyloglucanase, with a molecular mass of 80 kDa and a pI of 4.8, was isolated from the fungus Geotrichum sp. M128. It was found to be an endoglucanase active toward xyloglucan and not active toward carboxymethylcellulose, Avicel, or barley 1,3-1,4-β-glucan. Analysis of the precise substrate specificity using various xyloglucan oligosaccharide structures revealed that XEG has at least four subsites (−2 to +2) and specifically recognizes xylose branching at the +1 and +2 sites. The full-length cDNA encoding XEG was cloned and sequenced. It consists of a 2436-bp open reading frame encoding a 776-amino acid protein. From its deduced amino acid sequence, XEG can be classified as a family 74 glycosyl hydrolase. The cDNA encoding XEG was then expressed in Escherichia coli, and enzymatically active recombinant XEG was obtained.  相似文献   
998.
999.
WNK1 belongs to a unique protein kinase family that lacks the catalytic lysine in its normal position. Mutations in human WNK1 and WNK4 have been implicated in causing a familial form of hypertension. Here we report that overexpression of WNK1 led to increased activity of cotransfected ERK5 in HEK293 cells. ERK5 activation was blocked by the MEK5 inhibitor U0126 and expression of a dominant negative MEK5 mutant. Expression of dominant negative mutants of MEKK2 and MEKK3 also blocked activation of ERK5 by WNK1. Moreover, both MEKK2 and MEKK3 coimmunoprecipitated with endogenous WNK1 from cell lysates. WNK1 phosphorylated both MEKK2 and -3 in vitro, and MEKK3 was activated by WNK1 in 293 cells. Finally, ERK5 activation by epidermal growth factor was attenuated by suppression of WNK1 expression using small interfering RNA. Taken together, these results place WNK1 in the ERK5 MAP kinase pathway upstream of MEKK2/3.  相似文献   
1000.
Galactose mutarotase catalyzes the conversion of beta-d-galactose to alpha-d-galactose during normal galactose metabolism. The enzyme has been isolated from bacteria, plants, and animals and is present in the cytoplasm of most cells. Here we report the x-ray crystallographic analysis of human galactose mutarotase both in the apoform and complexed with its substrate, beta-d-galactose. The polypeptide chain folds into an intricate array of 29 beta-strands, 25 classical reverse turns, and 2 small alpha-helices. There are two cis-peptide bonds at Arg-78 and Pro-103. The sugar ligand sits in a shallow cleft and is surrounded by Asn-81, Arg-82, His-107, His-176, Asp-243, Gln-279, and Glu-307. Both the side chains of Glu-307 and His-176 are in the proper location to act as a catalytic base and a catalytic acid, respectively. These residues are absolutely conserved among galactose mutarotases. To date, x-ray models for three mutarotases have now been reported, namely that described here and those from Lactococcus lactis and Caenorhabditis elegans. The molecular architectures of these enzymes differ primarily in the loop regions connecting the first two beta-strands. In the human protein, there are six extra residues in the loop compared with the bacterial protein for an approximate longer length of 9 A. In the C. elegans protein, the first 17 residues are missing, thereby reducing the total number of beta-strands by one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号