首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   23篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   15篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   7篇
  2013年   17篇
  2012年   18篇
  2011年   15篇
  2010年   17篇
  2009年   8篇
  2008年   17篇
  2007年   14篇
  2006年   15篇
  2005年   8篇
  2004年   14篇
  2003年   11篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有273条查询结果,搜索用时 171 毫秒
111.
112.
113.
114.
Type I mucopolysaccharidosis (MPS I) is an autosomal recessive lysosomal storage disorder with neurological features. Humans and laboratory animals with MPS I exhibit various white matter abnormalities involving the corpus callosum and other regions. In this study, we first validated a novel MRI technique, entitled Relaxation Along a Fictitious Field in the rotating frame of rank n (RAFFn), as a measure of myelination and dysmyelination in mice. We then examined differences between MPS I mice and heterozygotes using RAFF5 and histology. RAFF5 (i.e., RAFFn with n = 5) relaxation time constants were highly correlated with histological myelin density (R2 = 0.68, P<0.001), and RAFF5 clearly distinguished between the hypomyelinated and dysmyelinated shiverer mouse and the wild-type mouse. Bloch-McConnell theoretical analysis revealed slower exchange correlation times and smaller exchange-induced relaxation rate constants for RAFF4 and RAFF5 compared to RAFF1-3, T, and T. These data suggest that RAFF5 may assess methylene protons in myelin lipids and proteins, though other mechanisms (e.g. detection of myelin-bound water) may also explain the sensitivity of RAFF5 to myelin. In MPS I mice, mean RAFF5 relaxation time constants were significantly larger for the striatum (P = 0.004) and internal capsule (P = 0.039), and marginally larger for the fornix (P = 0.15). Histological assessment revealed no differences between MPS I mice and heterozygotes in myelin density or corpus callosum thickness. Taken together, these findings support subtle dysmyelination in the brains of mice with MPS I. Dysmyelination may result from myelin lipid abnormalities caused by the absence of α-L-iduronidase. Our findings may help to explain locomotor and cognitive deficits seen in mice with MPS I.  相似文献   
115.
A family of cell-adhesive peptides homologous to sequences on different chains of fibrinogen was investigated. These homologous peptides, termed Haptides, include the peptides Cβ, preCγ, and CαE, corresponding to sequences on the C-termini of fibrinogen chains β, γ, and αE, respectively. Haptides do not affect cell survival and rate of proliferation of the normal cell types tested. The use of new sensitive assays of cell adhesion clearly demonstrated the ability of Haptides, bound to inert matrices, to mediate attachment of different matrix-dependent cell types including normal fibroblasts, endothelial, and smooth muscle cells. Here we present new active Haptides bearing homologous sequences derived from the C-termini of other proteins, such as angiopoietin 1&2, tenascins C&X, and microfibril-associated glycoprotein-4. The cell adhesion properties of all the Haptides were found to be associated mainly with their 11 N-terminal residues. Mutated preCγ peptides revealed that positively charged residues account for their attachment effect. These results suggest a mechanism of direct electrostatic interaction of Haptides with the cell membrane. The extended Haptides family may be applied in modulating adhesion of cells to scaffolds for tissue regeneration and for enhancement of nanoparticulate transfection into cells.  相似文献   
116.
The nuclear matrix is defined as the insoluble framework of the nucleus and has been implicated in the regulation of gene expression, the cell cycle, and nuclear structural integrity via linkage to intermediate filaments of the cytoskeleton. We have discovered a novel nuclear matrix protein, NRP/B (nuclear restricted protein/brain), which contains two major structural elements: a BTB domain–like structure in the predicted NH2 terminus, and a “kelch motif” in the predicted COOH-terminal domain. NRP/B mRNA (5.5 kb) is predominantly expressed in human fetal and adult brain with minor expression in kidney and pancreas. During mouse embryogenesis, NRP/B mRNA expression is upregulated in the nervous system. The NRP/B protein is expressed in rat primary hippocampal neurons, but not in primary astrocytes. NRP/B expression was upregulated during the differentiation of murine Neuro 2A and human SH-SY5Y neuroblastoma cells. Overexpression of NRP/B in these cells augmented neuronal process formation. Treatment with antisense NRP/B oligodeoxynucleotides inhibited the neurite development of rat primary hippocampal neurons as well as the neuronal process formation during neuronal differentiation of PC-12 cells. Since the hypophosphorylated form of retinoblastoma protein (p110RB) is found to be associated with the nuclear matrix and overexpression of p110RB induces neuronal differentiation, we investigated whether NRP/B is associated with p110RB. Both in vivo and in vitro experiments demonstrate that NRP/B can be phosphorylated and can bind to the functionally active hypophosphorylated form of the p110RB during neuronal differentiation of SH-SY5Y neuroblastoma cells induced by retinoic acid. Our studies indicate that NRP/B is a novel nuclear matrix protein, specifically expressed in primary neurons, that interacts with p110RB and participates in the regulation of neuronal process formation.  相似文献   
117.
118.
119.
Existing theory suggests that mitochondria act as significant, dynamic buffers of cytosolic calcium ([Ca2+]i) in heart. These buffers can remove up to one-third of the Ca2+ that enters the cytosol during the [Ca2+]i transients that underlie contractions. However, few quantitative experiments have been presented to test this hypothesis. Here, we investigate the influence of Ca2+ movement across the inner mitochondrial membrane during both subcellular and global cellular cytosolic Ca2+ signals (i.e., Ca2+ sparks and [Ca2+]i transients, respectively) in isolated rat cardiomyocytes. By rapidly turning off the mitochondria using depolarization of the inner mitochondrial membrane potential (ΔΨm), the role of the mitochondria in buffering cytosolic Ca2+ signals was investigated. We show here that rapid loss of ΔΨm leads to no significant changes in cytosolic Ca2+ signals. Second, we make direct measurements of mitochondrial [Ca2+] ([Ca2+]m) using a mitochondrially targeted Ca2+ probe (MityCam) and these data suggest that [Ca2+]m is near the [Ca2+]i level (∼100 nM) under quiescent conditions. These two findings indicate that although the mitochondrial matrix is fully buffer-capable under quiescent conditions, it does not function as a significant dynamic buffer during physiological Ca2+ signaling. Finally, quantitative analysis using a computational model of mitochondrial Ca2+ cycling suggests that mitochondrial Ca2+ uptake would need to be at least ∼100-fold greater than the current estimates of Ca2+ influx for mitochondria to influence measurably cytosolic [Ca2+] signals under physiological conditions. Combined, these experiments and computational investigations show that mitochondrial Ca2+ uptake does not significantly alter cytosolic Ca2+ signals under normal conditions and indicates that mitochondria do not act as important dynamic buffers of [Ca2+]i under physiological conditions in heart.  相似文献   
120.
Existing theory suggests that mitochondria act as significant, dynamic buffers of cytosolic calcium ([Ca2+]i) in heart. These buffers can remove up to one-third of the Ca2+ that enters the cytosol during the [Ca2+]i transients that underlie contractions. However, few quantitative experiments have been presented to test this hypothesis. Here, we investigate the influence of Ca2+ movement across the inner mitochondrial membrane during both subcellular and global cellular cytosolic Ca2+ signals (i.e., Ca2+ sparks and [Ca2+]i transients, respectively) in isolated rat cardiomyocytes. By rapidly turning off the mitochondria using depolarization of the inner mitochondrial membrane potential (ΔΨm), the role of the mitochondria in buffering cytosolic Ca2+ signals was investigated. We show here that rapid loss of ΔΨm leads to no significant changes in cytosolic Ca2+ signals. Second, we make direct measurements of mitochondrial [Ca2+] ([Ca2+]m) using a mitochondrially targeted Ca2+ probe (MityCam) and these data suggest that [Ca2+]m is near the [Ca2+]i level (∼100 nM) under quiescent conditions. These two findings indicate that although the mitochondrial matrix is fully buffer-capable under quiescent conditions, it does not function as a significant dynamic buffer during physiological Ca2+ signaling. Finally, quantitative analysis using a computational model of mitochondrial Ca2+ cycling suggests that mitochondrial Ca2+ uptake would need to be at least ∼100-fold greater than the current estimates of Ca2+ influx for mitochondria to influence measurably cytosolic [Ca2+] signals under physiological conditions. Combined, these experiments and computational investigations show that mitochondrial Ca2+ uptake does not significantly alter cytosolic Ca2+ signals under normal conditions and indicates that mitochondria do not act as important dynamic buffers of [Ca2+]i under physiological conditions in heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号