首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   11篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   11篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   12篇
  2011年   10篇
  2010年   11篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
141.
COVID-19 pandemic has caused a global lockdown in many countries throughout the world. Faced with a new reality, and until a vaccine or efficient treatment is found, humanity must figure out ways to keep the economy going, on one hand, while keeping the population safe, on the other hand, especially those that are susceptible to this virus. Here, we use a Watts–Strogatz network simulation, with parameters that were drawn from what is already known about the virus, to explore five different scenarios of partial lockdown release in two geographical locations with different age distributions. We find that separating age groups by reducing interactions between them protects the general population and reduces mortality rates. Furthermore, the addition of new connections within the same age group to compensate for the lost connections outside the age group still has a strong beneficial influence and reduces the total death toll by about 62%. While complete isolation from society may be the most protective scenario for the elderly population, it would have an emotional and possibly cognitive impact that might outweigh its benefit. Therefore, we propose creating age-related social recommendations or even restrictions, thereby allowing social connections while still offering strong protection for the older population.  相似文献   
142.
Abstract

The aminoacyl-tRNA synthetases (aaRSs) covalently attach amino acids to their corresponding nucleic acid adapter molecules, tRNAs. The interactions in the tRNA-aaRSs complexes are mostly non-specific, and largely electrostatic. Tracing a way of aaRS-tRNA mutual adaptation throughout evolution offers a clearer view of understanding how aaRS-tRNA systems preserve patterns of tRNA recognition and binding. In this study, we used the compensatory mutations analysis to explore adaptation of aaRSs in respond to random mutations that can occur in the tRNA-recognition area. We showed that the frequency of compensatory mutations among residues that belong to the recognition region is 1.75-fold higher than that of the exposed residues. The highest frequencies of compensatory mutations are observed for pairs of charged residues, wherein one residue is located within the tRNA-recognition area, while the second is placed outside of the area, and contributes to the formation of the aaRS electrostatic landscape. Given charged residues are compensated by buried charge residues in more than 60% of the analyzed mutations. The cytoplasmatic and mitochondrial aaRSs preserve similar patterns of compensatory mutations in the tRNA recognition areas. Moreover, we found that mitochondrial aaRSs demonstrate a significant increase in the frequency of compensatory mutations in the area. Our findings shed light on the physical nature of compensatory mutations in aaRSs, thereby keeping unchanged tRNA-recognition patterns.  相似文献   
143.
144.
Light‐sheet fluorescence microscopy (LSFM) is a powerful technique that can provide high‐resolution images of biological samples. Therefore, this technique offers significant improvement for three‐dimensional (3D) imaging of living cells. However, producing high‐resolution 3D images of a single cell or biological tissues, normally requires high acquisition rate of focal planes, which means a large amount of sample sections. Consequently, it consumes a vast amount of processing time and memory, especially when studying real‐time processes inside living cells. We describe an approach to minimize data acquisition by interpolation between planes using a phase retrieval algorithm. We demonstrate this approach on LSFM data sets and show reconstruction of intermediate sections of the sparse samples. Since this method diminishes the required amount of acquisition focal planes, it also reduces acquisition time of samples as well. Our suggested method has proven to reconstruct unacquired intermediate planes from diluted data sets up to 10× fold. The reconstructed planes were found correlated to the original preacquired samples (control group) with correlation coefficient of up to 90%. Given the findings, this procedure appears to be a powerful method for inquiring and analyzing biological samples.  相似文献   
145.
Millions of women worldwide have silicone breast implants. It has been reported that implant failure occurs in approximately a tenth of patients within 10 years, and the consequences of dissemination of silicone debris are poorly understood. Currently, silicone detection in histopathological slides is based on morphological features as no specific immunohistochemical technique is available. Here, we show the feasibility and sensitivity of stimulated Raman scattering (SRS) imaging to specifically detect silicone material in stained histopathological slides, without additional sample treatment. Histology slides of four periprosthetic capsules from different implant types were obtained after explantation, as well as an enlarged axillary lymph node from a patient with a ruptured implant. SRS images coregistered with bright‐field images revealed the distribution and quantity of silicone material in the tissue. Fast and high‐resolution imaging of histology slides with molecular specificity using SRS provides an opportunity to investigate the role of silicone debris in the pathophysiology of implant‐linked diseases.  相似文献   
146.
Whole slide imaging (WSI) allows pathologists to view virtual versions of slides on computer monitors. With increasing adoption of digital pathology, laboratories have begun to validate their WSI systems for diagnostic purposes according to reference guidelines. Among these the College of American Pathologists (CAP) guideline includes three strong recommendations (SRs) and nine good practice statements (GPSs). To date, the application of WSI to cytopathology has been beyond the scope of the CAP guideline due to limited evidence. Herein we systematically reviewed the published literature on WSI validation studies in cytology. A systematic search was carried out in PubMed-MEDLINE and Embase databases up to November 2021 to identify all publications regarding validation of WSI in cytology. Each article was reviewed to determine if SRs and/or GPSs recommended by the CAP guideline were adequately satisfied. Of 3963 retrieved articles, 25 were included. Only 4/25 studies (16%) satisfied all three SRs, with only one publication (1/25, 4%) fulfilling all three SRs and nine GPSs. Lack of a suitable validation dataset was the main missing SR (16/25, 64%) and less than a third of the studies reported intra-observer variability data (7/25, 28%). Whilst the CAP guideline for WSI validation in clinical practice helped the widespread adoption of digital pathology, more evidence is required to routinely employ WSI for diagnostic purposes in cytopathology practice. More dedicated validation studies satisfying all SRs and/or GPSs recommended by the CAP are needed to help expedite the use of WSI for primary diagnosis in cytopathology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号