首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5651篇
  免费   529篇
  国内免费   264篇
  6444篇
  2023年   59篇
  2022年   130篇
  2021年   219篇
  2020年   143篇
  2019年   159篇
  2018年   170篇
  2017年   109篇
  2016年   182篇
  2015年   295篇
  2014年   314篇
  2013年   388篇
  2012年   418篇
  2011年   401篇
  2010年   273篇
  2009年   221篇
  2008年   283篇
  2007年   250篇
  2006年   264篇
  2005年   209篇
  2004年   225篇
  2003年   165篇
  2002年   136篇
  2001年   109篇
  2000年   110篇
  1999年   99篇
  1998年   48篇
  1997年   48篇
  1996年   39篇
  1995年   39篇
  1994年   46篇
  1993年   44篇
  1992年   67篇
  1991年   75篇
  1990年   48篇
  1989年   58篇
  1988年   58篇
  1987年   55篇
  1986年   47篇
  1985年   55篇
  1984年   43篇
  1983年   31篇
  1982年   23篇
  1981年   20篇
  1979年   31篇
  1978年   23篇
  1977年   18篇
  1975年   21篇
  1974年   22篇
  1973年   25篇
  1971年   17篇
排序方式: 共有6444条查询结果,搜索用时 0 毫秒
51.

Background

Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs) is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE). In our study, spontaneous recurrent seizures (SRSs) were investigated by video-EEG monitoring during the entire procedure.

Methods/Principal Findings

In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV) and valproate (VPA) in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test) and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS) group) or VPA (n = 7, LEV resistant/VPA sensitive (LRVS) group), while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR) group). On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p), which were differently modulated in the MDR group versus both control and LS groups.

Conclusion

This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.  相似文献   
52.
Mechanical loading can induce or antagonize the extracellular matrix (ECM) synthesis, proliferation, migration, and inflammatory responses of annulus fibrosus cells (AFCs), depending on the loading mode and level. Caveolin-1 (Cav1), the core protein of caveolae, plays an important role in cellular mechanotransduction and inflammatory responses. In the present study, we presented that AFCs demonstrated different behaviors when subjected to cyclic tensile strain (CTS) for 24 h at a magnitude of 0%, 2%, 5% and 12%, respectively. It was found that 5% CTS had positive effects on cell proliferation, migration and anabolism, while 12% CTS had the opposite effects. Besides, cells exposed to interleukin-1β stimulus exhibited an increase expression in inflammatory genes, and the expression of these genes decreased after exposure to moderate mechanical loading with 5% CTS. In addition, 5% CTS decreased the level of Cav1 and integrin β1 and exhibited anti-inflammatory effects. Moreover, the expression of integrin β1 and p-p65 increased in AFCs transfected with Cav1 plasmids. In vivo results revealed that moderate mechanical stimulation could recover the water content and morphology of the discs. In conclusion, moderate mechanical stimulation restrained Cav1-mediated signaling pathway and exhibited anti-inflammatory effects on AFCs. Together with in vivo results, this study expounds the underlying molecular mechanisms on the effect of moderate mechanical stimulation on intervertebral discs (IVDs) and may provide a new therapeutic strategy for the treatment of IVD degeneration.  相似文献   
53.
Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling–mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.  相似文献   
54.
Cyanobacteria have developed various response mechanisms in long evolution to sense and adapt to external or internal changes under abiotic stresses. The signal transduction system of a model cyanobacterium Synechocystis sp. PCC 6803 includes mainly two-component signal transduction systems of eukaryotic-type serine/threonine kinases (STKs), on which most have been investigated at present. These two-component systems play a major role in regulating cell activities in cyanobacteria. More and more co-regulation and crosstalk regulations among signal transduction systems had been discovered due to increasing experimental data, and they are of great importance in corresponding to abiotic stresses. However, mechanisms of their functions remain unknown. Nevertheless, the two signal transduction systems function as an integral network for adaption in different abiotic stresses. This review summarizes available knowledge on the signal transduction network in Synechocystis sp. PCC 6803 and biotechnological implications under various stresses, with focuses on the co-regulation and crosstalk regulations among various stress-responding signal transduction systems.  相似文献   
55.
Bemisia tabaci has caused significant crop losses in China during the last decade. Recent research has shown that two potentially invasive variants, biotypes B and Q, have been found in several regions of China. Our objective was to determine the biotype status and the distribution of B. tabaci in Shandong province, an important agricultural region of China. Based on mitochondrial DNA markers, both biotypes B and Q were detected, with B being the predominant biotype. The results indicate that the more recently introduced biotype Q has not only been located in China but also has established and spread in some regions.  相似文献   
56.
D6 scavenges inflammatory chemokines and is essential for the regulation of inflammatory and immune responses. Mechanisms explaining the cellular basis for D6 function have been based on D6 expression by lymphatic endothelial cells. In this study, we demonstrate that functional D6 is also expressed by murine and human hemopoietic cells and that this expression can be regulated by pro- and anti-inflammatory agents. D6 expression was highest in B cells and dendritic cells (DCs). In myeloid cells, LPS down-regulated expression, while TGF-beta up-regulated expression. Activation of T cells with anti-CD3 and soluble CD28 up-regulated mRNA expression 20-fold, while maturation of human macrophage and megakaryocyte precursors also up-regulated D6 expression. Competition assays demonstrated that chemokine uptake was D6 dependent in human leukocytes, whereas mouse D6-null cells failed to uptake and clear inflammatory chemokines. Furthermore, we present evidence indicating that D6 expression is GATA1 dependent, thus explaining D6 expression in myeloid progenitor cells, mast cells, megakaryocytes, and DCs. We propose a model for D6 function in which leukocytes, within inflamed sites, activate D6 expression and thus trigger resolution of inflammatory responses. Our data on D6 expression by circulating DCs and B cells also suggest alternative roles for D6, perhaps in the coordination of innate and adaptive immune responses. These data therefore alter our models of in vivo D6 function and suggest possible discrete, and novel, roles for D6 on lymphatic endothelial cells and leukocytes.  相似文献   
57.
A major goal of speciation research is to understand the processes involved in the earliest stages of the evolution of reproductive isolation (RI). One important challenge has been to identify systems where lineages have very recently diverged and opportunities for hybridization are present. We conducted a comprehensive examination of the components of RI across the life cycle of two subspecies of Clarkia xantiana, which diverged recently (ca. 65,000 bp). One subspecies is primarily outcrossing, but self‐compatible, whereas the other is primarily selfing. The subspecies co‐occur in a zone of sympatry but hybrids are rarely observed. Premating barriers resulted in nearly complete isolation in both subspecies with flowering time and pollinator preference (for the outcrosser over the selfer) as the strongest barriers. We found that the outcrosser had consistently more competitive pollen, facilitating hybridization in one direction, but no evidence for pollen–pistil interactions as an isolating barrier. Surprisingly, postzygotic isolation was detected at the stage of hybrid seed development, but in no subsequent life stages. This crossing barrier was asymmetric with crosses from the selfer to outcrosser most frequently failing. Collectively, the results provide evidence for rapid evolution of multiple premating and postzygotic barriers despite a very recent divergence time.  相似文献   
58.
Washing is a standard step for enzyme‐linked immunosorbent assays (ELISA) performed on a paper‐based chip, in which nonspecific‐binding antibodies and antigens should be removed completely from the paper surface. In this study, a novel three‐dimensional (3D) washing strategy using a heating ring‐oven was carried out on a paper‐based chip. Compared with a plane washing mode by a ring‐oven, this 3D washing strategy obtained a lower background, as gravity played an important role in the washing step. The paper‐based chip was placed on a 3D plastic holder and the waste area was connected to a heating ring. Use of a heating waste area meant that the nonspecific‐binding protein was continuously carried to the waste area through gravity and capillary action. The angle between the plastic holder and the ring plane was carefully selected. The effect of washing on different parts of the detection area was investigated by upconversion fluorescence and chemiluminescence (CL). This novel 3D washing strategy was performed for carcinoembryonic antigen detection through CL and a lower detection limit of 2 pg ml?1 was obtained. This approach provides an effective washing strategy to remove nonspecific‐binding antibody from a paper‐based immunodevice.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号