首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   24篇
  国内免费   55篇
  2023年   11篇
  2022年   11篇
  2021年   29篇
  2020年   17篇
  2019年   16篇
  2018年   20篇
  2017年   17篇
  2016年   13篇
  2015年   21篇
  2014年   24篇
  2013年   33篇
  2012年   31篇
  2011年   23篇
  2010年   29篇
  2009年   19篇
  2008年   26篇
  2007年   22篇
  2006年   18篇
  2005年   22篇
  2004年   23篇
  2003年   15篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   8篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
481.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.  相似文献   
482.
Understanding the mechanisms that regulate mechanosensitivity in osteoblasts is important for controlling bone homeostasis and the development of new drugs to combat bone loss. It is believed that prestress or force generation (the tensile stress within the cell body) plays an important role in regulating cellular mechanosensitivity. In the present study, a three-dimensional (3D) collagen culture was used to monitor the change in prestress of the osteoblast-like cells. Collagen hydrogel compaction has been used as an indicator of the change in the degree of cell prestress. Previous results in this model demonstrated that extracellular ATP reduced the mechanosensitivity of osteoblasts by reducing cellular prestress. To elucidate the potential mechanisms involved in this process, the signaling pathways downstream of P2 purinoceptors involved in regulating the compaction of type I collagen gels were investigated. By using specific inhibitors to these signaling pathways, we found that ATP-induced reduction in collagen gel compaction rate is dependent on mitogen-activated protein kinase (MAKP) and NF-κB pathways. However, blocking protein kinase C with GF109203X did not change the compaction kinetics in the presence of ATPγS. Moreover, blocking cyclic AMP (cAMP), phosphatidylinositol-3 kinase (PI3K), calmodulin (CaM) or L-type voltage sensitive calcium channels did not affect ATP's ability to reduce collagen gel compaction. The results from the present and previous studies indicate that extracellular ATP may act as a negative feedback modulator in the mechanotransduction system since mechanical stimuli increase ATP release from stimulated cells.  相似文献   
483.
The oral surgical anaesthesia is field in which usually long-acting local anaesthetics are being used. Some of the currently used acting local anaesthetics as Levobupivacaine or Ropivacaine have reduced cardiac toxicity. The aim of this review is to provide an overview of acting mechanisms when anaesthetic agents are applied in oral surgery and the effect that they may have in patients with chronic concurrent cardiac conditions. There are notable linking the property of the local anaesthetics lipid solubility and the potency of local anaesthetic-induced vasoconstriction which can additionally compromise cardiac function in patients with previously impaired cardiac function.  相似文献   
484.
Agrobacterium rhizogenes strain K599 (pRi2659), a causative agent of hairy root disease, effectively induces hairy root formation in a variety of plant species, including numerous soybean (Glycine max) cultivars. Because Agrobacterium-mediated transformation of soybean remains challenging and labor intensive, K599 appeared a suitable progenitor for new agrobacteria strains for plant transformation. In this paper, we report the disarming and sequencing of pRi2659 and the usefulness of the resulting disarmed strain in plant transformation studies of Arabidopsis thaliana, maize (Zea mays), tomato (Lycopersicon esculentum), and soybean (G. max). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号