首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32937篇
  免费   1596篇
  国内免费   2076篇
  36609篇
  2025年   1篇
  2024年   311篇
  2023年   510篇
  2022年   1094篇
  2021年   1791篇
  2020年   1253篇
  2019年   1619篇
  2018年   1428篇
  2017年   1010篇
  2016年   1448篇
  2015年   1994篇
  2014年   2396篇
  2013年   2597篇
  2012年   2837篇
  2011年   2558篇
  2010年   1498篇
  2009年   1385篇
  2008年   1629篇
  2007年   1431篇
  2006年   1177篇
  2005年   923篇
  2004年   762篇
  2003年   721篇
  2002年   546篇
  2001年   487篇
  2000年   460篇
  1999年   431篇
  1998年   267篇
  1997年   255篇
  1996年   253篇
  1995年   230篇
  1994年   221篇
  1993年   150篇
  1992年   200篇
  1991年   179篇
  1990年   126篇
  1989年   98篇
  1988年   81篇
  1987年   69篇
  1986年   39篇
  1985年   44篇
  1984年   24篇
  1983年   30篇
  1982年   16篇
  1981年   17篇
  1980年   7篇
  1979年   5篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Abstract  Two new species of Culicoides, C. desytoculus sp. nov. and C. pulchellus sp. nov., are described from China. Three species of Culicoides, C. gynznopterus, C. parabarnetti and C. pikongkoi , are recorded for the first time in China.  相似文献   
92.
Aminopeptidase N (APN) has been proved to be deeply associated with cancer angiogenesis, metastasis and invasion. Therefore, APN gains increasing attention as a promising anti-tumor target. In the current study, we report the design, synthesis, biological evaluation and structure-activity relationship of one new series of leucine ureido derivatives containing the 1,2,3-triazole moiety. Among them, compound 31f was identified as the best APN inhibitor with IC50 value being two orders of magnitude lower than that of the positive control bestatin. Compound 31f possessed selective cytotoxicity to several tumor cell lines over the normal cell line human umbilical vein endothelial cells (HUVECs). Notably, when combined with 5-fluorouracil (5-Fu), 31f exhibited synergistic anti-proliferation effect against several tumor cell lines. At the same concentration, 31f exhibited much better anti-angiogenesis activities than bestatin in the HUVECs capillary tube formation assay and the rat thoracic aorta rings test. In the in vitro anti-invasion assay, 31f also exhibited superior potency over bestatin. Moreover, considerable in vivo antitumor potencies of 31f alone or in combination with 5-Fu were observed without significant toxic signs in a mouse heptoma H22 tumor transplant model.  相似文献   
93.
Zhao  Shuang  Cheng  Wen-Jie  Liu  Xin  Li  Zhao  Li  Hui-Zhou  Shi  Na  Wang  Xiu-Li 《Neurochemical research》2022,47(2):461-469

To evaluate the effects of dexmedetomidine (Dex) and oxycodone (Oxy) on neurocognitive and inflammatory response after tourniquet-induced ischemia–reperfusion (I/R) injury. C57/BL6 mice were used to construct the mouse model of tourniquet-induced I/R injury. Mice (n?=?48) were randomly divided into sham, I/R, Dex or Oxy group. Morris water maze test was performed to assess the spatial learning and memory function. The expression of NF-κB, TLR4, NR2B, M1 (CD68 and TNF-α) and M2 (CD206 and IL-10) polarization markers in mice hippocampus were detected by western blot or immunofluorescent staining. Spontaneous excitatory post-synaptic currents (sEPSCs) were recorded by electrophysiology. Dex treatment alleviated I/R-induced declines in learning and memory (p < 0.05), while Oxy had no significant effect on it. Compared with I/R group, Dex and Oxy treatment down-regulated the expression of NF-κB, TLR4, TNF-α and CD68 (all p < 0.05), while no significantly different was found in CD206 and IL-10. In addition, Dex treatment down-regulated the expression of NR2B and reduced the frequency and amplitude of sEPSCs in I/R model mice (all p < 0.05), while Oxy had no significant effect on them. Tourniquet-induced I/R could impair the neurocognitive function of mice. Dex treatment could alleviate I/R-induced neurocognitive disorder by inhibiting abnormal synaptic transmission in hippocampal neurons. Both Dex and Oxy could alleviate the inflammatory response likely by inhibiting the polarization of microglia toward M1 phenotype via TLR4/NF-κB pathway. Future studies are needed to further examine the effects of Dex on neurocognitive disorder after tourniquet-induced I/R injury and investigate the exact mechanism.

  相似文献   
94.
Zhang  Qi  Li  Yanan  Yin  Chunping  Yu  Jiaxu  Zhao  Juan  Yan  Lirong  Wang  Qiujun 《Neurochemical research》2022,47(6):1751-1764
Neurochemical Research - Postoperative cognitive dysfunction (POCD) remains one of the most common complications following anesthesia and surgery (AS) in the elderly population. Calcium-mediated...  相似文献   
95.
96.
Phloroglucinol synthase PhlD is a type III polyketide synthase capable of directly converting three molecules of malonyl-CoA to an industrially important chemical—phloroglucinol (1, 3, 5-trihydroxylbenzene). Although this enzymatic process provides an attractive biosynthetic route to phloroglucinol, the low productivity of PhlD limits its further practical application. Here we used protein engineering coupled with in situ product removal to improve the productivity of phoroglucinol biosynthesis in recombinant Escherichia coli. Specifically, directed evolution was used to obtain a series of thermostable PhlD mutants with the best one showing over 24-fold longer half-life of thermal inactivation than the wild-type enzyme at 37 °C. When introduced into a malonyl-CoA overproducing E. coli strain, one of the mutants showed 30 % improvement in phloroglucinol productivity compared to the wild-type enzyme in a shake-flask study and the final phloroglucinol concentration reached 2.35 g/L with 25 % of theoretical yield. A continuous product extraction strategy was designed to remove the toxic phloroglucinol product from the cell media, which further increased the titer of phloroglucinol to 3.65 g/L, which is the highest phloroglucinol titer ever reported to date.  相似文献   
97.
Zhao  X.  Chen  L.  Ren  Q.  Wu  Z.  Fang  S.  Jiang  Y.  Chen  Y.  Zhong  Y.  Wang  D.  Wu  J.  Zhang  G. 《Applied Biochemistry and Microbiology》2021,57(3):344-350
Applied Biochemistry and Microbiology - A pyridine-transforming strain P2 was isolated from sewage collected from Guangzhou oil stain field(China).According to the system analysis, it was...  相似文献   
98.
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/− mice. Relative to wild-type (WT) controls, Rdh10+/− males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/− females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/− male GM decrease 38% relative to WT. Rdh10+/− male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/− female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.  相似文献   
99.
This article presents an analytical method for the determination of the relative concentrations of trace elements in plasma protein by gel chromatography combined with SXRF (synchrotron radiation X-ray fluorescence). The fraction of plasma protein of male Kunming mice (body weight 24.2±0.3 g), treated with a cisplatin ip injection at a dose of 10 mg/kg, was obtained by the separation of a Sephadex G-50 column (buffered with ammonium acetate, pH 5.7). The SXRF experiments were performed at the Beijing Electron Positron Collider synchrotron radiation facility. The elements (Pt, S, Ca, Fe, Ni, Cu, Zn, Se, Br, and Sr) in the fraction of the plasma proteins (>22 kDa) were assayed using highly sensitive SXRF. The relative concentrations of elements were calculated by a normalization of Compton scattering intensity around 22 keV, after the normalization for the collection time of the X-ray spectrum and the counting of the ion chamber, and subtracting the contribution of the polycarbonate film for the supporting sample. The determination could prove that the element Pt in plasma was bound with macromolecular protein. Cu and S were present in the fraction of the protein in mice treated with cisplatin increase, and their ratios of treated/control were 1.66±0.06 and 1.78±0.33, respectively; Zn decreased to a ratio of 0.78±0.09. Our results are in agreement with others that cisplatin exposure leads to a marked loss of kidney copper and a moderate rise in kidney zinc. However, this article primarily describes one of the analytical methods used; it does not emphasize the results of the effect of cisplatin on trace elements in plasma protein.  相似文献   
100.
Hepatitis C virus (HCV) is able to induce autophagy via endoplasmic reticulum (ER) stress, but the exact molecular signaling pathway is not well understood. We found that the activity of the mechanistic target of rapamycin complex 1 (MTORC1) was inhibited in Huh7 cells either harboring HCV-N (genotype 1b) full-genomic replicon or infected with JFH1 (genotype 2a) virus, which led to the activation of UNC-51-like kinase 1 (ULK1) and thus to autophagy. We then analyzed activity upstream of MTORC1, and found that both protein kinase, AMP-activated, α (PRKAA, including PRKAA1 and PRKAA2, also known as AMP-activated protein kinase, AMPKα) and AKT (refers to pan AKT, including three isoforms of AKT1-3, also known as protein kinase B, PKB) were inhibited by HCV infection. The inhibition of the AKT-TSC-MTORC1 pathway contributed to upregulating autophagy, but inhibition of PRKAA downregulated autophagy. The net effect on autophagy was from AKT, which overrode the inhibition effect from PRKAA. It was further found that HCV-induced ER stress was responsible for the inhibition of the AKT pathway. Metformin, a PRKAA agonist, inhibited HCV replication not only by activating PRKAA as previously reported, but also by activating AKT independently of the autophagy pathway. Taken together, our data suggested HCV inhibited the AKT-TSC-MTORC1 pathway via ER stress, resulting in autophagy, which may contribute to the establishment of the HCV-induced autophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号