首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6048篇
  免费   477篇
  国内免费   567篇
  7092篇
  2024年   16篇
  2023年   73篇
  2022年   210篇
  2021年   332篇
  2020年   222篇
  2019年   260篇
  2018年   286篇
  2017年   207篇
  2016年   264篇
  2015年   393篇
  2014年   505篇
  2013年   469篇
  2012年   579篇
  2011年   478篇
  2010年   297篇
  2009年   290篇
  2008年   344篇
  2007年   296篇
  2006年   229篇
  2005年   195篇
  2004年   153篇
  2003年   171篇
  2002年   147篇
  2001年   100篇
  2000年   89篇
  1999年   70篇
  1998年   44篇
  1997年   51篇
  1996年   48篇
  1995年   53篇
  1994年   41篇
  1993年   34篇
  1992年   34篇
  1991年   26篇
  1990年   20篇
  1989年   14篇
  1988年   8篇
  1987年   8篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有7092条查询结果,搜索用时 15 毫秒
121.
122.
Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).  相似文献   
123.
During the human bone formation, the event of osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) is vital, and recent evidence has emphasized the important role of microRNAs (miRNAs) in osteogenic differentiation of hBMSCs. This study aims to examine the potential effects of miR-200c in osteogenic differentiation of hBMSCs and understand their underlying mechanisms. HBMSCs were obtained via human bone marrow. During osteogenic induction and differentiation, cells were transfected with different plasmids with the intention of investigating the roles of miR-200c on osteogenic differentiation, calcium salt deposition, alkaline-phosphatase (ALP) activity, mineralized nodule formation, osteocalcin (OCN) content, and proliferation of osteoblasts. Following transfection, dual luciferase reporter gene assay was conducted so as to explore the correlation between miR-200c and Myd88. Moreover, the AKT/β-Catenin signaling pathway was blocked with an AKT/β-Catenin inhibitor, AKTi, to investigate its involvement. The hBMSCs were successfully isolated from human bone marrow. Myd88 was determined as a target gene of miR-200c. Gain and loss-of-function assays confirmed that overexpression of miR-200c, or silencing of Myd88 promoted osteogenic differentiation, increased calcium salt deposition, ALP activity, mineralized nodule formation, and enhanced the proliferation of osteoblasts following osteogenic differentiation of hBMSCs. Meanwhile, the downregulation of miR-200c has been shown to have the opposite effect. Furthermore, these findings showed that the miR-200c overexpression activated the AKT/β-Catenin signaling pathway by targeting Myd88. To sum up, the miR-200c upregulation induces osteogenic differentiation of hBMSCs by activating the AKT/β-Catenin signaling pathway via the inhibition of Myd88, providing a target for treatment of bone repair.  相似文献   
124.
α1 Nicotinic acetylcholine receptor (α1nAChR) is an important nicotine receptor that is widely distributed in vascular smooth muscle cells, macrophages, and endothelial cells. However, the role of α1nAChR in nicotine-mediated atherosclerosis remains unclear. The administration of nicotine for 12 weeks increased the area of the atherosclerotic lesion, the number of macrophages infiltrating the plaques, and the circulating levels of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, in apolipoprotein E-deficient (ApoE−/−) mice fed a high-fat diet. Nicotine also increased α1nAChR, calpain-1, matrix metalloproteinase-2 (MMP-2), and MMP-9 expression in the aortic tissue. Silencing of α1nAChR with an adenoassociated virus decreased the atherosclerotic size, lesion macrophage content, and circulating levels of inflammatory cytokines and suppressed α1nAChR, calpain-1, MMP-2, and MMP-9 expression in the nicotine group. In vitro, nicotine-induced α1nAChR, calpain-1, MMP-2, and MMP-9 expression in mouse vascular smooth muscle cells (MOVAS) and macrophages (RAW264.7), and enhanced the migration and proliferation of these cells. The silencing of α1nAChR inhibited these effects of nicotine MOVAS and RAW264.7 cells. Thus, we concluded that nicotine promoted the development of atherosclerosis partially by inducing the migration and proliferation of vascular smooth muscle cells and macrophages and inducing an inflammatory reaction. The effect of nicotine on atherogenesis may be mediated by α1nAChR-induced activation of the calpain-1/MMP-2/MMP-9 signaling pathway.  相似文献   
125.
This study revealed that iturin A-like lipopeptides produced by Bacillus subtillis induced both paraptosis and apoptosis in heterogeneous human epithelial colorectal adenocarcinoma (Caco-2) cells. Autophagy was simultaneously induced in Caco-2 cells treated with iturin A-like lipopeptides at the early stage and inhibited at the later stage. A western blot analysis showed that the lipopeptides induced apoptosis in Caco-2 cells via a mitochondrial-dependent pathway, as indicated by upregulated expression of the apoptotic genes bax and bad and downregulated expression of the antiapoptotic gene bcl-2. The induction of paraptosis in Caco-2 cells was indicated by the occurrence of many cytoplasmic vacuoles accompanied by endoplasmic reticulum (ER) dilatation and mitochondrial swelling and dysfunction. ER stress also occurred with significant increases in reactive oxygen species and Ca2+ levels in cells. Autophagy was detected by a transmission electron microscopy analysis and by upregulated expression of LC3-II and downregulated expression of LC3-I. The inhibition of autophagy at the later stage was shown by upregulated expression of p62. This study revealed the capability of iturin A-like B. subtilis lipopeptides to simultaneously execute antitumor potential via multiple pathways.  相似文献   
126.
The evolutionary and population demographic history of marine red algae in East Asia is poorly understood. Here, we reconstructed the phylogeographies of two upper intertidal species endemic to East Asia, Gelidiophycus divaricatus and G. freshwateri. Phylogenetic and phylogeographic inferences of 393 mitochondrial cox1, 128 plastid rbcL, and 342 nuclear ITS2 sequences were complemented with ecological niche models. Gelidiophycus divaricatus, a southern species adapted to warm water, is characterized by a high genetic diversity and a strong geographical population structure, characteristic of stable population sizes and sudden reduction to recent expansion. In contrast, G. freshwateri, a northern species adapted to cold temperate conditions, is genetically relatively homogeneous with a shallow population structure resulting from steady population growth and recent equilibrium. The overlap zone of the two species roughly matches summer and winter isotherms, indicating that surface seawater temperature is a key feature influencing species range. Unidirectional genetic introgression was detected at two sites on Jeju Island where G. divaricatus was rare while G. freshwateri was common, suggesting the occurrence of asymmetric natural hybrids, a rarely reported event for rhodophytes. Our results illustrate that Quaternary climate oscillations have left strong imprints on the current day genetic structure and highlight the importance of seawater temperature and sea level change in driving speciation in upper intertidal seaweed species.  相似文献   
127.
Inhibition of osteoclasts formation and bone resorption by estrogen is very important in the etiology of postmenopausal osteoporosis. The mechanisms of this process are still not fully understood. Recent studies implicated an important role of microRNAs in estrogen-mediated responses in various cellular processes, including cell differentiation and proliferation. Thus, we hypothesized that these regulatory molecules might be implicated in the process of estrogen-decreased osteoclasts formation and bone resorption. Western blot, quantitative real-time polymerase chain reaction, tartrate-resistant acid phosphatase staining, pit formation assay and luciferase assay were used to investigate the role of microRNAs in estrogen-inhibited osteoclast differentiation and bone resorption. We found that estrogen could directly suppress receptor activator of nuclear factor B ligand/macrophage colony-stimulating factor-induced differentiation of bone marrow-derived macrophages into osteoclasts in the absence of stromal cell. MicroRNA-27a was significantly increased during the process of estrogen-decreased osteoclast differentiation. Overexpressing of microRNA-27a remarkably enhanced the inhibitory effect of estrogen on osteoclast differentiation and bone resorption, whereas which were alleviated by microRNA-27a depletion. Mechanistic studies showed that microRNA-27a inhibited peroxisome proliferator-activated receptor gamma (PPARγ) and adenomatous polyposis coli (APC) expression in osteoclasts through a microRNA-27a binding site within the 3′-untranslational region of PPARγ and APC. PPARγ and APC respectively contributed to microRNA-27a-decreased osteoclast differentiation and bone resorption. Taken together, these results showed that microRNA-27a may play a significant role in the process of estrogen-inhibited osteoclast differentiation and function.  相似文献   
128.
129.
In nature, crops encounter a combination of abiotic stresses that severely limit yield. Our aim was to dynamically expose the changes of tomatoes' physiological parameters to drought, heat and their combination and thereby clarify the relationship between the responses to single and combined stress. We studied the effect of single and combined drought and heat stresses on the shoot and root of two tomato cultivars (Sufen No.14 as CV1; Jinlingmeiyu as CV2). After being exposed to combined stress for 6 days, the dry weight of shoot and root significantly decreased. The Fq′/Fm′ (quantum yield of photosystem II) was significantly lower in CV1 upon drought and combined stress and in CV2 subjected to combined stress (between days 4 and 6) compared to control. The relative water content during combined stress was significantly lower than control from day 4 to recovery day 2. On days 3 and 6, the water loss rate significantly increased under heat stress and decreased at drought and combined stress, respectively. The combined stress caused severe damages on photosystem II and chloroplast ultrastructure. The root activity after stress recovered even though drought significantly increased the activity from day 2 to day 6. Combined stress result in complex responses during tomato growth. The CV1 was more heat tolerant than CV2, but there was no varietal difference at drought and combined stress. This study contributes to the understanding of the underlying physiological response mechanism of plant to combined stress and crop improvement by providing valuable information for abiotic stress‐tolerant tomato breeding.  相似文献   
130.
Multiple transporters and channels mediate cation transport across the plasma membrane and tonoplast to regulate ionic homeostasis in plant cells. However, much less is known about the molecular function of transporters that facilitate cation transport in other organelles such as Golgi. We report here that Arabidopsis KEA4, KEA5, and KEA6, members of cation/proton antiporters‐2 (CPA2) superfamily were colocalized with the known Golgi marker, SYP32‐mCherry. Although single kea4,5,6 mutants showed similar phenotype as the wild type under various conditions, kea4/5/6 triple mutants showed hypersensitivity to low pH, high K+, and high Na+ and displayed growth defects in darkness, suggesting that these three KEA‐type transporters function redundantly in controlling etiolated seedling growth and ion homeostasis. Detailed analysis indicated that the kea4/5/6 triple mutant exhibited cell wall biosynthesis defect during the rapid etiolated seedling growth and under high K+/Na+ condition. The cell wall‐derived pectin homogalacturonan (GalA)3 partially suppressed the growth defects and ionic toxicity in the kea4/5/6 triple mutants when grown in the dark but not in the light conditions. Together, these data support the hypothesis that the Golgi‐localized KEAs play key roles in the maintenance of ionic and pH homeostasis, thereby facilitating Golgi function in cell wall biosynthesis during rapid etiolated seedling growth and in coping with high K+/Na+ stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号