全文获取类型
收费全文 | 1680篇 |
免费 | 100篇 |
国内免费 | 298篇 |
专业分类
2078篇 |
出版年
2024年 | 5篇 |
2023年 | 28篇 |
2022年 | 77篇 |
2021年 | 103篇 |
2020年 | 58篇 |
2019年 | 77篇 |
2018年 | 89篇 |
2017年 | 74篇 |
2016年 | 85篇 |
2015年 | 112篇 |
2014年 | 155篇 |
2013年 | 143篇 |
2012年 | 172篇 |
2011年 | 133篇 |
2010年 | 90篇 |
2009年 | 68篇 |
2008年 | 95篇 |
2007年 | 101篇 |
2006年 | 71篇 |
2005年 | 61篇 |
2004年 | 45篇 |
2003年 | 52篇 |
2002年 | 38篇 |
2001年 | 20篇 |
2000年 | 17篇 |
1999年 | 18篇 |
1998年 | 17篇 |
1997年 | 16篇 |
1996年 | 11篇 |
1995年 | 11篇 |
1994年 | 8篇 |
1993年 | 10篇 |
1992年 | 7篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1986年 | 2篇 |
1985年 | 2篇 |
排序方式: 共有2078条查询结果,搜索用时 15 毫秒
91.
Liping Wang Michael Kazachkov Wenyun Shen Mei Bai Hong Wu Jitao Zou 《The Plant journal : for cell and molecular biology》2014,80(6):965-976
Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis. 相似文献
92.
Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells 总被引:4,自引:0,他引:4
Hisaeda H Tetsutani K Imai T Moriya C Tu L Hamano S Duan X Chou B Ishida H Aramaki A Shen J Ishii KJ Coban C Akira S Takeda K Yasutomo K Torii M Himeno K 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(4):2496-2503
Malaria is still a life-threatening infectious disease that continues to produce 2 million deaths annually. Malaria parasites have acquired immune escape mechanisms and prevent the development of sterile immunity. Regulatory T cells (Tregs) have been reported to contribute to immune evasion during malaria in mice and humans, suggesting that activating Tregs is one of the mechanisms by which malaria parasites subvert host immune systems. However, little is known about how these parasites activate Tregs. We herein show that TLR9 signaling to dendritic cells (DCs) is crucial for activation of Tregs. Infection of mice with the rodent malaria parasite Plasmodium yoelii activates Tregs, leading to enhancement of their suppressive function. In vitro activation of Tregs requires the interaction of DCs with parasites in a TLR9-dependent manner. Furthermore, TLR9(-/-) mice are partially resistant to lethal infection, and this is associated with impaired activation of Tregs and subsequent development of effector T cells. Thus, malaria parasites require TLR9 to activate Tregs for immune escape. 相似文献
93.
Effect of grain-slag media for the treatment of wastewater in a biological aerated filter 总被引:2,自引:0,他引:2
Grain-slag was applied as the media of biological aerated filters (BAF). The performance of two lab-scale BAF was monitored for 6 months to compare the effect of grain-slag with haydite as media. Under ammonia nitrogen load rates varying from 0.49 to 1.21 kg NH(3)-N(m(3)d)(-1), the overall NH(3)-N reductions of the BAF supported by grain-slag and haydite averaged 84.30% and 80.87%, respectively. Higher ammonia nitrogen removal in the BAF with grain-slag was attributable to its buffering pH value capacity by stripping calcium carbonate (CaCO(3)). In terms of removing organic matter, turbidity and colourity, the efficiency of the BAF with grain-slag was lower than that with haydite, but more than 78%, 79% and 80% of fed organic matter, turbidity and colourity was still removed, respectively. So it is feasible for grain-slag to be applied as the media of BAF. The results obtained from the research of ammonia nitrogen removal rate versus pH values indicate that ammonia nitrogen removal rates were not distinctly dependent of pH values in the BAF supported by grain-slag. More than 85% of ammonia nitrogen was removed at pH values from 5.2 to 7.8 ranges. Grain-slag can strip CaCO(3) into the wastewater to buffer pH value and maintain optimal nitrification rates. 相似文献
94.
95.
Han R Qin L Brown ST Christensen JN Beller HR 《Applied and environmental microbiology》2012,78(7):2462-2464
We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions). 相似文献
96.
Fang D Pan C Lin H Lin Y Zhang G Wang H He M Xie L Zhang R 《The Journal of biological chemistry》2012,287(19):15776-15785
The fine microstructure of nacre (mother of pearl) illustrates the beauty of nature. Proteins found in nacre were believed to be "natural hands" that control nacre formation. In the classical view of nacre formation, nucleation of the main minerals, calcium carbonate, is induced on and by the acidic proteins in nacre. However, the basic proteins were not expected to be components of nacre. Here, we reported that a novel basic protein, PfN23, was a key accelerator in the control over crystal growth in nacre. The expression profile, in situ immunostaining, and in vitro immunodetection assays showed that PfN23 was localized within calcium carbonate crystals in the nacre. Knocking down the expression of PfN23 in adults via double-stranded RNA injection led to a disordered nacre surface in adults. Blocking the translation of PfN23 in embryos using morpholino oligomers led to the arrest of larval development. The in vitro crystallization assay showed that PfN23 increases the rate of calcium carbonate deposition and induced the formation of aragonite crystals with characteristics close to nacre. In addition, we constructed the peptides and truncations of different regions of this protein and found that the positively charged C-terminal region was a key region for the function of PfN23 Taken together, the basic protein PfN23 may be a key accelerator in the control of crystal growth in nacre. This provides a valuable balance to the classic view that acidic proteins control calcium carbonate deposition in nacre. 相似文献
97.
Li S Xie L Zhang C Zhang Y Gu M Zhang R 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,138(3):235-243
The shells of bivalves are mainly composed of calcium carbonate, a product of calcium metabolism. In the process of shell formation, the uptake, transport and recruitment of calcium ion are highly regulated and involved in many factors. Among these regulatory factors, calmodulin (CaM), a pivotal multifunction regulator of calcium metabolism in nearly all organisms, is thought to play an important role in the calcium metabolism involved in shell formation. In this study, a full-length CaM cDNA was isolated from the pearl oyster (Pinctada fucata). The oyster calmodulin encodes a 16.8 kDa protein which shares high similarity with vertebrate calmodulin. The oyster CaM mRNA shows the highest level of expression in the gill, a key organ involved in calcium uptake in oyster calcium metabolism. In situ hybridization results revealed that oyster CaM mRNA is expressed at the folds and the outer epithelial cells of the dorsal region of the mantle, suggesting that CaM is involved in regulation of calcium transport and secretion. Oyster CaM also showed a typical Ca2+ dependent electrophoretic shift characterization and calcium binding activity. Taken together, we have identified and characterized a pivotal calcium metabolism regulator of the oyster that may play an important role in regulation of calcium uptake, transport and secretion in the process of shell formation. 相似文献
98.
副溶血弧菌引起的疾病给水产养殖行业带来巨大损失,而随着抗生素的禁用,人们开始探索治疗水产动物病菌的新型方法,如噬菌体治疗法。从青岛市城阳水产品批发市场采集了15份海产品养殖水及下水道污水样品,以副溶血弧菌作为宿主菌,采用点滴法分离纯化获得12株副溶血弧菌噬菌体,通过双层平板法研究副溶血弧菌噬菌体CHY5-M1M的最佳感染复数、一步生长曲线、温度和pH的稳定性以及对紫外线的敏感度等生物学特性。结果显示,CHY5-M1M噬菌体效价为8.65×1013CFU·mL-1,且在100感染复数时效价最高;一步生长曲线的潜伏期为20 min,裂解时长100 min,140min后达到平稳期;噬菌体在温度为40℃时效价最高,高于60℃时活性开始下降;噬菌体pH适应范围为5~11;噬菌体浓度随紫外照射时间增加明显下降;噬菌体基因组共43 193 bp,包含44个基因,无毒力因子基因和抗生素耐药基因。研究结果表明,噬菌体CHY5-M1M在开发新型抗弧菌药物、预防治疗严重海水动物弧菌病等方面具有良好的应用前景,有望作为未来的抗生素替代产品。 相似文献
99.
100.
普通油茶叶绿体基因组密码子偏好性分析 总被引:1,自引:0,他引:1
为了利用叶绿体基因工程技术改良普通油茶的重要经济性状,该研究以普通油茶叶绿体全基因组序列为材料,从中筛选出51条长度大于300 bp且以ATG起始的非重复CDS(Coding DNA Sequence)为对象,利用CodonW软件分析其密码子偏好性。结果表明:密码子第三位GC含量为27.55%,ENC范围在35.23~56.67之间,平均值为46.09;RSCU值大于1.00的密码子数目为30个,其中29个第三位碱基以U或A结尾;中性绘图表明GC12与GC3的相关系数为0.143,相关性不显著,回归系数为0.0573;频数分布显示,55%基因的ENC比值集中分布在0~0.1,25%基因的ENC比值分布在0.1~0.2之间;对应分析结果表明,第一向量轴占10.12%的差异,第二向量轴占9.36%的差异,其余两轴分别占7.97%和7.46%,前4轴累计差异为34.91%。中性绘图、ENC-plot和对应性分析均表明普通油茶叶绿体基因密码子偏好受突变作用,更多受选择的影响。最终取高表达优越密码子和高频密码子共有的CUU、AUU、GUU、GUA、UAA、CAA、AAA、GAC、GAA、CCU、ACU、GCU、GCA、UGU、CGU、AGU、UUG、GGU等18个密码子作为最优密码子。该研究结果为利用叶绿体基因工程技术改良普通油茶重要经济性状奠定了基础。 相似文献