首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8886篇
  免费   693篇
  国内免费   840篇
  10419篇
  2024年   42篇
  2023年   171篇
  2022年   372篇
  2021年   601篇
  2020年   388篇
  2019年   434篇
  2018年   439篇
  2017年   326篇
  2016年   411篇
  2015年   584篇
  2014年   665篇
  2013年   696篇
  2012年   849篇
  2011年   738篇
  2010年   464篇
  2009年   386篇
  2008年   426篇
  2007年   371篇
  2006年   316篇
  2005年   263篇
  2004年   216篇
  2003年   182篇
  2002年   149篇
  2001年   106篇
  2000年   112篇
  1999年   105篇
  1998年   84篇
  1997年   85篇
  1996年   55篇
  1995年   56篇
  1994年   71篇
  1993年   34篇
  1992年   38篇
  1991年   33篇
  1990年   25篇
  1989年   31篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   20篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Liu XR  Tian WH  Dong XY  Wu XZ  Lv JX  Wu XB 《病毒学报》2011,27(6):533-541
研究在HeLaS3细胞中过表达Lin28a/Lin28b对let-7家族miRNA表达水平和活性的影响。首先,构建Lin28a和Lin28b的表达载体pAAV2neo-Lin28a和pAAV2neo-Lin28b,分别转染HeLaS3细胞并筛选获得Lin28a和Lin28b的稳定表达细胞株HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b。然后,以pAAV2neo-Gluc-(Fluc)为基本骨架,构建并获得检测let-7家族miRNA活性的8种质粒型载体,并包装为相应的重组腺相关病毒(Recombinant adeno-associated virus,rAAV),作为检测miRNA靶序列介导的转录后抑制活性的传感器,命名为Asensor。在此基础上,以HeLaS3细胞为对照,用Western blot检测HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b细胞中Lin28a和Lin28b表达水平,用QRT-PCR测定let-7家族各成员表达水平,用Asensor检测let-7家族各成员活性。Western blot结果显示,HeLaS3/pAAV2neo-Lin28a和HeLaS3/pAAV2neo-Lin28b均能有效地表达Lin28a和Lin28b蛋白;QRT-PCR检测结果显示,相比于HeLaS3细胞,HeLaS3/pAAV2neo-Lin28a细胞中let-7家族各成员表达水平都下降(除let-7e外),但不同成员下降幅度存在差异;Asensor检测结果显示,let-7家族所有成员活性水平都下降,但不同成员下降幅度也存在差异,且同一成员活性水平与表达水平及其下降趋势也不一致。相比于HeLaS3细胞,HeLaS3/pAAV2neo-Lin28b细胞中let-7家族成员的表达和活性水平均明显下降,但表达水平的下降幅度比HeLaS3/pAAV2neo-Lin28a细胞大,而活性的下降幅度却与之相近。本研究建立了一种检测和比较miRNA靶序列介导的转录后抑制活性的方法,首次研究了过表达Lin28a和Lin28b对细胞中的let-7家族miRNA活性影响,并发现Lin28a和Lin28b对let-7家族miRNA表达水平的影响和对其相应活性的影响不一致性,说明在检测miRNA表达水平的同时检测miRNA活性能更全面揭示miRNA的调节功能,为进一步研究let-7家族的调控机制奠定了基础。  相似文献   
992.
Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt). Pm21 is an effective broad-spectrum powdery mildew resistance gene, which shows a considerable promise in wheat breeding. We report here a proteomic approach to investigate the resistance response proteins after fungal infection and emphasize the resistance changes induced by Pm21. Two wheat (Triticum aestivum L.) near-isogenic lines (NILs), recurrent parent ‘Bainong,’ which is susceptible to powdery mildew, and its near-isogenic line ‘W2132’ carrying resistance gene Pm21) were used to investigate some changes in their proteomes after being infected. Proteins were extracted from the leaves sampled in 48 h after inoculation, separated by two-dimensional electrophoresis, and stained with Coomassie brilliant blue. Among these proteins, a total of 56 spots differentially expressed after Bgt infection were detected. Sixteen proteins, identified by MALDI-TOF-MS, exhibited more than a 1.5-fold increase upon fungal infection. Unfortunately, three spots were not identified successfully. The predicted functions of identified proteins were related to energy metabolism and defensive responses; they were involved in many physiological resistance responses, including enhancing energy metabolism, proteins synthesis and stabilization, antioxidant reactions, cell-wall reinforcement, and lignification. Interestingly that the expression of two proteins related to the cell-wall reinforcement was enhanced in the resistant line and one protein related to photosynthesis was lost in a susceptible line. By transmission electronic microscopy, the corresponding physiological characteristics were also observed. These results provide us with the information to further reveal the resistance mechanism of Pm21 action and comprehensively investigate the physiological response to powdery mildew at the protein level.  相似文献   
993.

Background

Guidewire (GW) size and stenosis dimensions are the two major factors affecting the translesional pressure drop. Studying the combined effect of these parameters on the mean pressure drop (Δp) across the stenosis is of high practical importance.

Methods

In this study, time averaged mass and momentum conservation equations are solved analytically to obtain pressure drop-flow, Δp-Q, curves for three different percentage area blockages corresponding to moderate (64%), intermediate (80%), and severe (90%) stenoses. Stenosis is considered to be axisymmetric consisting of three different sections namely converging, throat, and diverging regions. Analytical expressions for pressure drop are obtained for each of these regions separately. Using this approach, effects of lesion length and GW insertion on the mean translesional pressure drop and its component (loss due to momentum change and viscous loss) are analyzed.

Results and Conclusion

It is observed that for a given percent area stenosis (AS), increase in the throat length only increases the viscous loss. However, increase in the severity of stenosis and GW insertion increase both loss due to momentum change and viscous loss. GW insertion has greater contribution to the rise in viscous loss (increase by 2.14 and 2.72 times for 64% and 90% AS, respectively) than loss due to momentum change (1.34% increase for 64% AS and 25% decrease for 90% AS). It also alters the hyperemic pressure drop in moderate (48% increase) to intermediate (30% increase) stenoses significantly. However, in severe stenoses GW insertion has a negligible effect (0.5% increase) on hyperemic translesional pressure drop. It is also observed that pressure drop in a severe stenosis is less sensitive to lesion length variation (4% and 14% increase in Δp for without and with GW, respectively) as compared to intermediate (10% and 30% increase in Δp for without and with GW, respectively) and moderate stenoses (22% and 48% increase in Δp for without and with GW, respectively). Based on the contribution of pressure drop components to the total translesional pressure drop, it is found that viscous losses are dominant in moderate stenoses, while in severe stenoses losses due to momentum changes are significant. It is also shown that this simple analytical solution can provide valuable information regarding interpretation of coronary diagnostic parameters such as fractional flow reserve (FFR).  相似文献   
994.
Despite abundant evidence from basic/preclinical research that excessive NMDAR (N-methyl-d-aspartate receptor) stimulation is a crucial step required for brain damage following a stroke, clinical trials for NMDAR blockers have all ended with disappointments. The past decade of stroke research has revealed distinct NMDAR subpopulations and many specific effectors downstream of these receptors that are differentially responsible for neuronal survival and death. These new advancements provide promising targets for the development of novel NMDAR-based neuroprotective stroke therapies that could have greater therapeutic windows and reduced side effects. In this review, we discuss these advancements with a particular emphasis on the identification of novel signaling effectors downstream of proneuronal death NMDARs and the potential implications of these findings for the development of stroke therapeutics.  相似文献   
995.
The hippocampus is crucial for higher brain functions, such as learning, memory, and emotion. Many diseases like epilepsy and Down's syndrome are associated with abnormalities in early hippocampal development. In addition, adult dentate neurogenesis is thought to be defective in several classes of psychiatric disorders. However, the mechanisms regulating hippocampal development and adult neurogenesis remain unclear. One of the limitations to studying these processes is the scarcity of available specific mouse tools. Here, we report an inducible transgenic Cre mouse line, Frizzled 9‐CreER?, in which tamoxifen administration induces Cre recombinant. Our data show that Cre is expressed in the developing hippocampal primordium, confined to the granule cell layer at P20 and further limited to the subgranular zone in the adult dentate gyrus. Cre recombinase shows very high activity in all of these regions. Thus, this transgenic line will be a powerful tool in understanding the mechanisms of hippocampal development, adult neurogenesis, and associated diseases. genesis 49:919–926, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   
996.
Zou J  Zhou L  Du XX  Ji Y  Xu J  Tian J  Jiang W  Zou Y  Yu S  Gan L  Luo M  Yang Q  Cui Y  Yang W  Xia X  Chen M  Zhao X  Shen Y  Chen PY  Worley PF  Xiao B 《Developmental cell》2011,20(1):97-108
mTor kinase is involved in cell growth, proliferation, and differentiation. The roles of mTor activators, Rheb1 and Rheb2, have not been established in?vivo. Here, we report that Rheb1, but not Rheb2, is critical for embryonic survival and mTORC1 signaling. Embryonic deletion of Rheb1 in neural progenitor cells?abolishes mTORC1 signaling in developing brain and increases mTORC2 signaling. Remarkably, embryonic and early postnatal brain development appears grossly normal in these Rheb1f/f,Nes-cre mice with the notable exception of deficits of myelination. Conditional expression of Rheb1 transgene in neural progenitors increases mTORC1 activity and promotes myelination in the brain. In addition the Rheb1 transgene rescues mTORC1 signaling and hypomyelination in the Rheb1f/f,Nes-cre mice. Our study demonstrates that Rheb1 is essential for mTORC1 signaling and myelination in the brain, and suggests that mTORC1 signaling plays a role in selective cellular adaptations, rather than general cellular viability.  相似文献   
997.
A metabonomic approach based on complementary hydrophilic interaction chromatography and reversed-phase liquid chromatography combined with tandem mass spectrometry and time-course analysis of metabolites was implemented to find more reliable potential biomarkers in urine of Walker 256 tumor-bearing rats. A major challenge in metabonomics is distinguishing reliable biomarkers that are closely associated with the genesis and progression of diseases from those that are unrelated but altered significantly. In this study, these biomarkers were selected according to the change trends of discriminating metabolites during the genesis and progression of cancer. Seven consecutive batches of urine samples from preinoculation to 16 days after were collected and analyzed. Multivariate analysis revealed 87 discriminating metabolites. Time-course analysis of discriminating metabolites was used to select more reliable biomarkers with regular and reasonable change trends. Finally, 47 were found and 15 were identified including 12 carnitine derivatives, 2 amino acid derivatives, 1 nucleoside. On the basis of time-course behaviors of these potential biomarkers, we hypothesize such disruption might result from elevated cell proliferation, reduced β-oxidation of fatty acids, and poor renal tubular reabsorption. These studies demonstrate that this method can help to find more reliable potential biomarkers and provide valuable biochemical insights into metabolic alterations in tumor-bearing biosystems.  相似文献   
998.
Cyclin D1 overexpression is a common feature of many human malignancies. Genomic deletion analysis has demonstrated a key role for cyclin D1 in cellular proliferation, angiogenesis and cellular migration. To investigate the mechanisms contributing to cyclin D1 functions, we purified cyclin D1a-associated complexes by affinity chromatography and identified the PACSIN 2 (protein kinase C and casein kinase substrate in neurons 2) protein by mass spectrometry. The PACSIN 2, but not the related PACSIN 1 and 3, directly bound wild-type cyclin D1 (cyclin D1a) at the carboxyl terminus and failed to bind cyclin D1b, the alternative splicing variant of cyclin D1. PACSIN 2 knockdown induced cellular migration and reduced cell spreading in LNCaP cells expressing cyclin D1a. In cyclin D1−/− mouse embryonic fibroblasts (MEFs), cyclin D1a, but not cyclin D1b, reduced the cell spreading to a polarized morphology. siPACSIN 2 had no effect on cellular migration of cyclin D1−/− MEFs. Cyclin D1a restored the migratory ability of cyclin D1−/− MEFs, which was further enhanced by knocking down PACSIN 2 with siRNA. The cyclin D1-associated protein, PACSIN 2, regulates cell spreading and migration, which are dependent on cyclin D1 expression.Key words: PACSIN 2, cyclin D1, polymorphism, cellular migration, cell spreading, cancer  相似文献   
999.
Mortality attributable to infection with methicillin-resistant Staphylococcus aureus (MRSA) has now overtaken the death rate for AIDS in the United States, and advances in research are urgently needed to address this challenge. We report the results of the systematic identification of protein-protein interactions for the hospital-acquired strain MRSA-252. Using a high-throughput pull-down strategy combined with quantitative proteomics to distinguish specific from nonspecific interactors, we identified 13,219 interactions involving 608 MRSA proteins. Consecutive analyses revealed that this protein interaction network (PIN) exhibits scale-free organization with the characteristic presence of highly connected hub proteins. When clinical and experimental antimicrobial targets were queried in the network, they were generally found to occupy peripheral positions in the PIN with relatively few interacting partners. In contrast, the hub proteins identified in this MRSA PIN that are essential for network integrity and stability have largely been overlooked as drug targets. Thus, this empirical MRSA-252 PIN provides a rich source for identifying critical proteins essential for network stability, many of which can be considered as prospective antimicrobial drug targets.  相似文献   
1000.
Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome.In-depth characterization and quantitation of protein isoforms, including post-translationally modified proteins, are challenging goals of contemporary proteomics. Traditionally, top-down (1, 2) and bottom-up (3, 4) proteomics have been two distinct analytical paths for liquid-based proteomics analysis. Top-down proteomics is the mass spectrometry (MS)-based characterization of intact proteins, whereas bottom-up proteomics requires a chemical or enzymatic proteolytic digestion of all proteins into peptides prior to MS analysis. Both strategies have their own strengths and challenges and can be thought of as complementary rather than competing analytical techniques.In a top-down proteomics approach, proteins are usually separated by one- or two-dimensional liquid chromatography (LC) and identified using high performance MS (5, 6). This approach is very attractive because it allows the identification of protein isoforms arising from various amino acid modifications, genetic variants (e.g. single nucleotide polymorphisms), mRNA splice variants, and multisite modifications (7) (e.g. specific histone modifications) as well as characterization of proteolytic processing events. However, there are several challenges that have limited the broad application of the approach. Typically, intact proteins are less soluble than their peptide complement, which effectively results in greater losses during various stages of sample handling (i.e. limited sensitivity). Similarly, proteins above ∼40–50 kDa in size are more difficult to ionize, detect, and dissociate in most high throughput MS work flows. Additionally, major challenges associated with MS data interpretation and sensitivity, especially for higher molecular mass proteins (>100 kDa) and highly hydrophobic proteins (e.g. integral membrane proteins), remain largely unsolved, thus limiting the applicability of top-down proteomics on a large scale.Bottom-up proteomics approaches have broad application because peptides are easier to separate and analyze via LC coupled with tandem mass spectrometry (MS/MS), offering a basis for more comprehensive protein identification. As this method relies on protein digestion (which produces multiple peptides for each protein), the sample complexity can become exceedingly large, requiring several dimensions of chromatographic separations (e.g. strong cation exchange and/or high pH reversed phase) prior to the final LC separation (typically reversed phase (RP)1 C18), which is oftentimes directly coupled with the mass spectrometer (3, 8). In general, the bottom-up analysis rarely achieves 100% sequence coverage of the original proteins, which can result in an incorrect/incomplete assessment of protein isoforms and combinatorial PTMs. Additionally, the digested peptides are not detected with uniform efficiency, which challenges and distorts protein quantification efforts.Because the data obtained from top-down and bottom-up work flows are complementary, several attempts have been made to integrate the two strategies (9, 10). Typically, these efforts have utilized extensive fractionation of the intact protein separation followed by bottom-up analysis of the collected fractions. Results so far have encouraged us to consider on-line digestion methods for integrating top-down and bottom-up proteomics in a higher throughput fashion. Such an on-line digestion approach would not only benefit in terms of higher sample throughput and improved overall sensitivity but would also allow a better correlation between the observed intact protein and its peptide digestion products, greatly aiding data analysis and protein characterization efforts.So far, however, none of the on-line integrated methods have proven robust enough for routine high throughput analyses. One of the reasons for this limited success relates to the choice of the proteolytic enzyme used for the bottom-up segment. Trypsin is by far the most widely used enzyme for proteome analyses because it is affordable (relative to other proteases), it has been well characterized for proteome research, and it offers a nice array of detectable peptides due to a fairly even distribution of lysines and arginines across most proteins. However, protein/peptide RPLC separations (optimal at low pH) are fundamentally incompatible with on-line trypsin digestion (optimal at pH ∼ 8) (11, 12). Therefore, on-line coupling of trypsin digestion and RPLC separations is fraught with technological challenges, and proposed solutions (12) have not proven to be robust enough for integration into demanding high throughput platforms.Our approach to this challenge was to investigate alternative proteases that may be more compatible with automated on-line digestion, peptide separation, and MS detection. Pepsin, which is acid-compatible (i.e. it acts in the stomach to initially aid in the digestion of food) (13), is a particularly promising candidate. This protease has previously been successfully used for the targeted analyses of protein complexes, hydrogen/deuterium exchange experiments (14, 15), and characterization of biopharmaceuticals (16, 17). Generally, pepsin preferentially cleaves the peptide bond located on the N-terminal side of hydrophobic amino acids, such as leucine and phenylalanine, although with less specificity than the preferential cleavage observed for trypsin at arginine and lysine. The compatibility of pepsin with typical LC-MS operation makes it an ideal choice for the development of novel approaches combining protein digestion, protein/peptide separation, and MS-based protein/peptide identification.To develop an automated system capable of simultaneously capturing top-down and bottom-up data, enzyme kinetics of the chosen protease must be extremely fast (because one cannot wait hours as is typical when performing off-line proteolysis). Another requirement is the use of immobilized enzyme or a low enough concentration of the enzyme such that autolysis products do not obscure the detection of substrate peptides. The latter was a concern when using pepsin because prior hydrogen/deuterium exchange experiments used enzyme:substrate ratios up to 1:2 (18, 19). To test whether or not such a large concentration of pepsin was necessary, we performed pepsin digestion at ratios of 1:20. Many alternative energy inputs into the system were considered for speeding up the digestion. For instance, it has been shown that an input of ultrasonic energy could accelerate the reaction rate of a typical trypsin digestion while using small amounts of a protease (20). Because ultrasonic energy results in an increase of temperature and microenvironments of high pressure, it has been hypothesized that the higher temperature was the component responsible for the enhanced enzyme activity (21). López-Ferrer et al. (22, 23), however, have demonstrated that application of higher pressure with incorporation of a Barocycler alone can make trypsin display faster enzyme kinetics. This phenomenon can easily be integrated with an LC separation (which already operates at elevated pressure) to enable an automatable ultrarapid on-line digestion LC-MS proteomics platform. Herein, we refer to this platform as the fast on-line digestion system (FOLDS) (23). Although FOLDS has been described before using trypsin, here the system is characterized with pepsin, and the results obtained are compared with results attainable with trypsin. Like trypsin, pepsin produced efficient protein digestion in just a few minutes when placed under pressure. Because of the natural maximal activity of pepsin at low pH, the FOLDS can be incorporated with a RePlay (Advion Biosciences, Ithaca, NY) system, and this powerful combination is what ultimately makes the integration of top-down and bottom-up proteomics analyses possible. The integrated analysis begins with a chromatographic separation of intact proteins. The separated proteins are then split into two streams. One stream proceeds directly to the mass spectrometer for MS and/or tandem MS analysis. The second stream is split into a long capillary where the chromatographic separation of the proteins is maintained, but their arrival to the mass spectrometer for detection is delayed. This is in essence the concept of RePlay (24, 25). Herein, we have taken the RePlay a step further by implementing our FOLDS technology into the second split delayed stream of proteins. While these delayed proteins travel down the long and narrow capillary, we exposed them to pepsin where, in combination with the pressure, the proteins are quickly and reproducibly digested. These peptide fragments are subsequently subjected to MS and/or tandem MS analysis. The FOLDS RePlay system allows the rapid and robust incorporation of the integrated top-down bottom-up proteomics work flow with the ability to not only identify proteins but also to sequence multisite/combinatorial PTMs because all detected peptides (from the FOLDS analysis) are confined to the original chromatographic peak of the protein they were derived from. The analysis of protein mixtures using this integrated strategy reduces the total amount of samples required to obtain both the top-down and bottom-up data, increases throughput, and improves protein sequence coverage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号