首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  63篇
  2021年   2篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2000年   1篇
  1989年   1篇
排序方式: 共有63条查询结果,搜索用时 0 毫秒
11.
12.
Gap junction channels provide the basis for the electrical syncytial properties of the heart as a communicating electrical network. Cardiac gap junction channels are predominantly composed of connexin 40 or connexin 43. The conductance of these channels (g(j)) can be regulated pharmacologically: substances which activate protein kinase C, protein kinase A or protein kinase G may alter Cx43 gap junction conductance. However, for PKC, this seems to be subtype specific. Thus, antiarrhythmic peptides can enhance g(j) via activation of PKCepsilon, while FGF-2 reduces g(j) via PKCepsilon. Lipophilic drugs can uncouple the channels. Besides an acute regulation of g(j), the expression of the cardiac connexins can also be regulated. A decrease in Cx43 with a concomitant increase in Cx40 has been found in end-stage failing hearts, while in renovascular hypertension, an increase in Cx43 has been described. Mediators like endothelin-1, angiotensin-II, TGF-beta, VEGF, and cAMP have been shown to increase Cx43. Interestingly, endothelin-1 and angiotensin-II increased Cx43 but did not affect Cx40 expression. In contrast, in humans suffering from atrial fibrillation (AF), the content in Cx40 can be enhanced while Cx43 was unaltered, although in several other studies, other changes of the cardiac connexins were found, which might be related to the type of AF. Regarding the role of calcium, the content in both Cx40 and Cx43 was decreased in cultured neonatal rat cardiomyocytes after 24 h administration of 100 nM verapamil. Thus, gap junctional channels can be affected pharmacologically either acutely by modulating gap junction conductance or chronically by altering gap junction protein expression. Interestingly, it appears that the expression of Cx43 and Cx40 can be differentially regulated.  相似文献   
13.
Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies.  相似文献   
14.
15.
16.
17.
Examination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions. In comparison with humans and mice, the chicken CDR3 repertoire was skewed toward longer sequences, was dominated by small amino acids (G/S/A/C/T), and had higher cysteine (chicken, 9.4%; human, 1.6%; and mouse, 0.25%) but lower tyrosine content (chicken, 9.2%; human, 16.8%; and mouse 26.4%). A strong correlation (R(2) = 0.97) was observed between increasing CDR3 length and higher cysteine content. This suggests that noncanonical disulfides are strongly favored in chickens, potentially increasing CDR stability and complexity in the topology of the combining site. The probable formation of disulfide bonds between CDR3 and CDR1, FW2, or CDR2 was also observed, as described in camelids. All features of the naive repertoire were fully replicated in the target-selected, phage-displayed repertoire. The isolation of a chicken Fab with four noncanonical cysteines in the V(H) that exhibits 64 nM (K(D)) binding affinity for its target proved these constituents to be part of the humoral response, not artifacts. This study supports the hypothesis that disulfide bond-constrained CDR3s are a structural diversification strategy in the restricted germline v-gene repertoire of chickens.  相似文献   
18.
Y-Family DNA polymerase IV (Dpo4) from Sulfolobus solfataricus serves as a model system for eukaryotic translesion polymerases, and three-dimensional structures of its complexes with native and adducted DNA have been analyzed in considerable detail. Dpo4 lacks a proofreading exonuclease activity common in replicative polymerases but uses pyrophosphorolysis to reduce the likelihood of incorporation of an incorrect base. Mg(2+) is a cofactor for both the polymerase and pyrophosphorolysis activities. Despite the fact that all crystal structures of Dpo4 have been obtained in the presence of Ca(2+), the consequences of replacing Mg(2+) with Ca(2+) for Dpo4 activity have not been investigated to date. We show here that Ca(2+) (but not Ba(2+), Co(2+), Cu(2+), Ni(2+), or Zn(2+)) is a cofactor for Dpo4-catalyzed polymerization with both native and 8-oxoG-containing DNA templates. Both dNTP and ddNTP are substrates of the polymerase in the presence of either Mg(2+) or Ca(2+). Conversely, no pyrophosphorolysis occurs in the presence of Ca(2+), although the positions of the two catalytic metal ions at the active site appear to be very similar in mixed Mg(2+)/Ca(2+)- and Ca(2+)-form Dpo4 crystals.  相似文献   
19.
The in vivo mechanism of NO trapping by iron-dithiocarbamate complexes is considered. Contrary to common belief, we find that in biological systems the NO radicals are predominantly trapped by ferric iron-dithiocarbamates. Therefore, the trapping leads to ferric mononitrosyl complexes which are diamagnetic and cannot be directly detected with Electron Paramagnetic Resonance spectroscopy. The ferric mononitrosyl complexes are far easily reduced to ferrous state with L-cysteine, glutathione, ascorbate or dithiocarbamate ligands than their non-nitrosyl counterpart. When trapping NO in oxygenated biological systems, the majority of trapped nitric oxide is found in diamagnetic ferric mononitrosyl iron complexes. Only a minority fraction of NO is trapped in the form of paramagnetic ferrous mononitrosyl iron complexes with dithiocarbamate ligands. Subsequent ex vivo reduction of biological samples sharply increases the total yield of the paramagnetic mononitrosyl iron complexes. Reduction also eliminates the overlapping EPR spectrum from Cu(2+)-dithiocarbamate complexes. This facilitates the quantification of yields from NO trapping.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号