首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   54篇
  国内免费   2篇
  2023年   2篇
  2021年   13篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   12篇
  2015年   33篇
  2014年   27篇
  2013年   33篇
  2012年   49篇
  2011年   38篇
  2010年   25篇
  2009年   15篇
  2008年   25篇
  2007年   27篇
  2006年   24篇
  2005年   25篇
  2004年   34篇
  2003年   21篇
  2002年   27篇
  2001年   11篇
  2000年   15篇
  1999年   15篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   1篇
  1994年   5篇
  1993年   7篇
  1992年   13篇
  1991年   4篇
  1990年   13篇
  1989年   7篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有607条查询结果,搜索用时 31 毫秒
201.
Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.  相似文献   
202.
Insulin-like growth factor (IGF) signaling pathway is an important regulatory mechanism of tumorigenesis and drug resistance in many cancers. The present study explored the potential synergistic effects between IGF receptor (IGFR) inhibition and other molecular targeted agents (MTA) in HCC cells. HCC cell lines (Hep3B, PLC5, and SK-Hep1) and HUVECs were tested. The MTA tested included sorafenib, sunitinib, and the IGFR kinase inhibitor NVP-AEW541. The potential synergistic antitumor effects were tested by median dose effect analysis and apoptosis assay in vitro and by xenograft models in vivo. The activity and functional significance of pertinent signaling pathways and expression of apoptosis-related proteins were measured by RNA interference and Western blotting. We found that IGF can activate IGFR and downstream AKT signaling activities in all the HCC cells tested, but the growth-stimulating effect of IGF was most prominent in Hep3B cells. NVP-AEW541 can abrogate IGF-induced activation of IGFR and AKT signaling in HCC cells. IGF can increase the resistance of HCC cells to sunitinib. The apoptosis-inducing effects of sunitinib, but not sorafenib, were enhanced when IGFR signaling activity was inhibited by NVP-AEW541 or IGFR knockdown. Chk2 kinase activation was found contributory to the synergistic anti-tumor effects between sunitinib and IGFR inhibition. Our data indicate that the apoptosis-potentiating effects of IGFR inhibition for HCC may be drug-specific. Combination therapy of IGFR inhibitors with other MTA may improve the therapeutic efficacy in HCC.  相似文献   
203.
Epidermal growth factor receptor (EGFR), which promotes cell survival and division, is found at abnormally high levels on the surface of many cancer cell types, including many cases of non-small cell lung cancer. Erlotinib (Tarceva), an oral small-molecule tyrosine kinase inhibitor, is a so-called targeted drug that inhibits the tyrosine kinase domain of EGFR, and thus targets cancer cells with some specificity while doing less damage to normal cells. However, erlotinib resistance can occur, reducing the efficacy of this treatment. To develop more effective therapeutic interventions by overcoming this resistance problem, we combined the histone deacetylase inhibitor, MPT0E028, with erlotinib in an effort to increase their antitumor effects in erlotinib-resistant lung adenocarcinoma cells. This combined treatment yielded significant growth inhibition, induced the expression of apoptotic proteins (PARP, γH2AX, and caspase-3), increased the levels of acetylated histone H3, and showed synergistic effects in vitro and in vivo. These effects were independent of the mutation status of the genes encoding EGFR or K-Ras. MPT0E028 synergistically blocked key regulators of the EGFR/HER2 signaling pathways, attenuating multiple compensatory pathways (e.g., AKT, extracellular signal-regulated kinase, and c-MET). Our results indicate that this combination therapy might be a promising strategy for facilitating the effects of erlotinib monotherapy by activating various networks. Taken together, our data provide compelling evidence that MPT0E028 has the potential to improve the treatment of heterogeneous and drug-resistant tumors that cannot be controlled with single-target agents.  相似文献   
204.
205.
Three new polyoxygenated C18-dibenzocyclooctadiene lignans, arisanschinins M and N (1 and 2) and schisphenin A (3), together with eight related metabolites (411), were isolated from the fruits of Schisandra arisanensis and Schisandra sphenanthera, respectively. The structures of 13 were elucidated on the basis of extensive spectroscopic and 2D NMR (HSQC, HMBC, and NOESY) analyses. The configuration of the biphenyl moiety in the octadiene ring was determined by circular dichroism (CD). Compound 1 possessed an unprecedented 3-(1-hydroxypropan-2-yl)-3-methyl-1,4-dioxo-2-one lactonide ring system attaching at C-6/C-14. Pharmacological studies revealed that compounds 3, 4, 6, 7, and 10 exhibited significant anti-hepatic fibrosis activity, while 9 and 11 showed cytotoxicity against HSC-T6 cells. The biogenetic pathway for compound 1 was also proposed.  相似文献   
206.
207.
Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T–segment) through a transient double-strand break in a second segment of DNA (gate or G–segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this non-equilibrium topology simplification remains speculative. The bend angle model postulates that non-equilibrium topology simplification scales with the bend angle imposed on the G–segment DNA by the binding of a type IIA topoisomerase. To test this bend angle model, we used atomic force microscopy and single-molecule Förster resonance energy transfer to measure the extent of bending imposed on DNA by three type IIA topoisomerases that span the range of topology simplification activity. We found that Escherichia coli topoisomerase IV, yeast topoisomerase II and human topoisomerase IIα each bend DNA to a similar degree. These data suggest that DNA bending is not the sole determinant of non-equilibrium topology simplification. Rather, they suggest a fundamental and conserved role for DNA bending in the enzymatic cycle of type IIA topoisomerases.  相似文献   
208.
209.
210.
NK cell development requires IL-15, which is "trans-presented" to IL-15Rβγ on NK cells by IL-15Rα on other cells. In this study, we report that different levels of IL-15 trans-presentation are required for different NK cell developmental events to reach full maturation status. Because the IL-15Rα intracellular domain has the capacity to recruit signaling molecules, we generated knockin and transgenic (Tg) mice that lack the intracellular domain to assess the role of the IL-15 trans-presentation level independent of the function of this domain. The level of IL-15Rα on various cells of these mice follows the order WT > Tg6 > knockin > Tg1 ≥ knockout. Bone marrow (BM)-derived dendritic cells prepared from these mice induced Stat5 phosphorylation in NK cells. The level of phospho-Stat5 correlated with the level of IL-15Rα on BMDCs, thus offering the opportunity to study quantitative effects of IL-15 trans-presentation on NK cell development in vivo. We found that NK cell homeostasis, mature NK cell differentiation, and acquisition of Ly49 receptor and effector functions require different levels of IL-15 trans-presentation input to achieve full status. All NK cell developmental events examined were quantitatively regulated by the IL-15Rα level of BM-derived and radiation-resistant accessory cells, but not by IL-15Rα of NK cells. We also found that IL-15Rα of radiation-resistant cells was more potent than IL-15Rα of BM-derived accessory cells in support of stage 2 to stage 3 splenic mNK differentiation. In summary, each examined developmental event required a particular level of IL-15 trans-presentation by accessory cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号