排序方式: 共有80条查询结果,搜索用时 15 毫秒
61.
Tokhtaeva E Sachs G Souda P Bassilian S Whitelegge JP Shoshani L Vagin O 《The Journal of biological chemistry》2011,286(29):25801-25812
N-Glycans of the Na,K-ATPase β1 subunit are important for intercellular adhesion in epithelia, suggesting that epithelial junctions depend on N-glycan-mediated interactions between the β1 subunits of neighboring cells. The level of co-immunoprecipitation of the endogenous β1 subunit with various YFP-linked β1 subunits expressed in Madin-Darby canine kidney cells was used to assess β1-β1 interactions. The amount of co-precipitated endogenous dog β1 was greater with dog YFP-β1 than with rat YFP-β1, showing that amino acid-mediated interactions are important for β1-β1 binding. Co-precipitation of β1 was also less with the unglycosylated YFP-β1 than with glycosylated YFP-β1, indicating a role for N-glycans. Mixing cells expressing dog YFP-β1 with non-transfected cells increased the amount of co-precipitated β1, confirming the presence of intercellular (YFP-β1)-β1 complexes. Accordingly, disruption of intercellular junctions decreased the amount of co-precipitated β1 subunits. The decrease in β1 co-precipitation both with rat YFP-β1 and unglycosylated YFP-β1 was associated with decreased detergent stability of junctional proteins and increased paracellular permeability. Reducing N-glycan branching by specific inhibitors increased (YFP-β1)-β1 co-precipitation and strengthened intercellular junctions. Therefore, interactions between the β1 subunits of neighboring cells maintain integrity of intercellular junctions, and alterations in the β1 subunit N-glycan structure can regulate stability and tightness of intercellular junctions. 相似文献
62.
mRNA localization may be an important determinant for protein localization. We describe a simple PCR-based genomic-tagging strategy (m-TAG) that uses homologous recombination to insert binding sites for the RNA-binding MS2 coat protein (MS2-CP) between the coding region and 3' untranslated region (UTR) of any yeast gene. Upon coexpression of MS2-CP fused with GFP, we demonstrate the localization of endogenous mRNAs (ASH1, SRO7, PEX3 and OXA1) in living yeast (Saccharomyces cerevisiae). 相似文献
63.
Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease 总被引:8,自引:6,他引:8 下载免费PDF全文
Tzipora Shoshani Arie Augarten Ephraim Gazit Nurit Bashan Yaakov Yahav Yosef Rivlin Asher Tal Hagit Seret Liora Yaar Eitan Kerem Bat-sheva Kerem 《American journal of human genetics》1992,50(1):222-228
Only about 30% of the cystic fibrosis chromosomes in the Israeli cystic fibrosis patient populations carry the major CF mutation (delta F508). Since different Jewish ethnic groups tended to live as closed isolates until recent times, high frequencies of specific mutations are expected among the remainder cystic fibrosis chromosomes of these ethnic groups. Genetic factors appear to influence the severity of the disease. It is therefore expected that different mutations will be associated with either severe or mild phenotype. Direct genomic sequencing of exons included in the two nucleotide-binding folds of the putative CFTR protein was performed on 119 Israeli cystic fibrosis patients from 97 families. One sequence alteration which is expected to create a termination at residue 1282 (W1282X) was found in 63 chromosomes. Of 95 chromosomes, 57 (60%) are of Ashkenazi origin. Together with the delta F508 (23% in this group), G542X, N1303K, and 1717-1G----A mutations, the identification of 92% of cystic fibrosis chromosomes of Ashkenazi origin becomes possible. Patients homozygous for the W1282X mutation (n = 16) and patients heterozygous for the delta F508 and W1282X mutations (n = 22) had similarly severe disease, reflected by pancreatic insufficiency, high incidence of meconium ileus (37% and 27%, respectively), early age at diagnosis, poor nutritional status, and variable pulmonary function. In conclusion, the W1282X mutation is the most common cystic fibrosis mutation in the Ashkenazi Jewish patient population in Israel. This nonsense mutation is associated with presentation of severe disease. 相似文献
64.
Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with mitochondria in vivo. This supports earlier cell fractionation and microarray-based studies that proposed mMP association with the mitochondrial fraction. Interestingly, a number of mMPs showed a dependency on the mitochondrial Puf3 RNA-binding protein, as well as nonessential proteins of the translocase of the outer membrane (TOM) complex import machinery, for normal colocalization with mitochondria. We examined the specific determinants of ATP2 and OXA1 mRNA localization and found a mutual dependency on the 3' UTR, Puf3, Tom7, and Tom70, but not Tom20, for localization. Tom6 may facilitate the localization of specific mRNAs as OXA1, but not ATP2, mRNA was mislocalized in tom6Δ cells. Interestingly, a substantial fraction of OXA1 and ATP2 RNA granules colocalized with the endoplasmic reticulum (ER) and a deletion in MDM10, which mediates mitochondria-ER tethering, resulted in a significant loss of OXA1 mRNA localization with ER. Finally, neither ATP2 nor OXA1 mRNA targeting was affected by a block in translation initiation, indicating that translation may not be essential for mRNA anchoring. Thus, endogenously expressed mRNAs are targeted to the mitochondria in vivo, and multiple factors contribute to mMP localization. 相似文献
65.
Lupu-Meiri M Geras-Raaka E Lupu R Shapira H Sandbank J Segal L Gershengorn MC Oron Y 《Journal of cellular physiology》2012,227(11):3621-3628
High levels of plasminogen activator inhibitor-1 (PAI-1), which is produced by stromal, endothelial, and cancer cells and has multiple complex effects on cancers, correlate with poor cancer prognosis. To more definitively study the role of endogenously produced PAI-1 in human pancreatic adenocarcinoma (PAC) PANC-1 cell line biology, we used anti-PAI-1 shRNA to create stable PAI-1 deficient cells (PD-PANC-1s). PD-PANC-1s exhibited a heterogeneous morphology. While the majority of cells exhibited a cuboidal shape similar to the parental PANC-1 or the vector-infected control cells, numerous large cells with long filopodia and a neuronal-like appearance were observed. Although both Vector-control cells and PD-PANC-1s expressed mRNAs that are characteristic of mesenchymal, neural, and epithelial phenotypes, epithelial marker RNAs were up-regulated (e.g., E-cadherin, 32-fold) whereas mesenchymal marker RNAs were down-regulated (e.g., Thy1, ninefold) in PD-PANC-1s, suggesting mesenchymal-to-epithelial transition. Neural markers exhibited both up- and down-regulation. Immunocytochemistry indicated that epithelial-like PD-PANC-1s expressed E-cadherin and β-catenin in significantly more cells, while neural-like cells exhibited robust expression of organized β-3-tubulin. PAI-1 and E-cadherin were rarely co-expressed in the same cells. Indeed, examination of PAI-1 and E-cadherin mRNAs expression in additional cell lines yielded clear inverse correlation. Indeed, infection of Colo357 PAC cells (that exhibit high expression of E-cadherin) with PAI-1-expressing adenovirus led to a marked decrease in E-cadherin expression and to enhanced migration of cells from clusters. Our results suggest that endogenous PAI-1 suppresses expression of E-cadherin and differentiation in PAC cells in vitro, supporting its negative impact on tumor prognosis. 相似文献
66.
Akop Seksenyan Noga Ron‐Harel David Azoulay Liora Cahalon Michal Cardon Patricia Rogeri Minhee K. Ko Miguel Weil Shlomo Bulvik Gideon Rechavi Ninette Amariglio Eli Konen Maya Koronyo‐Hamaoui Raz Somech Michal Schwartz 《Journal of cellular and molecular medicine》2010,14(10):2470-2482
Amyotrophic lateral sclerosis (ALS) is a devastating disease, characterized by extremely rapid loss of motor neurons. Our studies over the last decade have established CD4+ T cells as important players in central nervous system maintenance and repair. Those results, together with recent findings that CD4+ T cells play a protective role in mouse models of ALS, led us to the current hypothesis that in ALS, a rapid T‐cell malfunction may develop in parallel to the motor neuron dysfunction. Here, we tested this hypothesis by assessing thymic function, which serves as a measure of peripheral T‐cell availability, in an animal model of ALS (mSOD1 [superoxide dismutase] mice; G93A) and in human patients. We found a significant reduction in thymic progenitor‐cell content, and abnormal thymic histology in 3–4‐month‐old mSOD1 mice. In ALS patients, we found a decline in thymic output, manifested in the reduction in blood levels of T‐cell receptor rearrangement excision circles, a non‐invasive measure of thymic function, and demonstrated a restricted T‐cell repertoire. The morbidity of the peripheral immune cells was also manifested in the increase of pro‐apoptotic BAX/BCXL2 expression ratio in peripheral blood mononuclear cells (PBMCs) of these patients. In addition, gene expression screening in the same PBMCs, revealed in the ALS patients a reduction in key genes known to be associated with T‐cell activity, including: CD80, CD86, IFNG and IL18. In light of the reported beneficial role of T cells in animal models of ALS, the present observation of thymic dysfunction, both in human patients and in an animal model, might be a co‐pathological factor in ALS, regardless of the disease aetiology. These findings may lead to the development of novel therapeutic approaches directed at overcoming the thymic defect and T‐cell deficiency. 相似文献
67.
68.
Teresita Padilla-Benavides María L. Roldán Isabel Larre David Flores-Benitez Nicolas Villegas-Sepúlveda Ruben G. Contreras Marcelino Cereijido Liora Shoshani 《Molecular biology of the cell》2010,21(13):2217-2225
The very existence of higher metazoans depends on the vectorial transport of substances across epithelia. A crucial element of this transport is the membrane enzyme Na+,K+-ATPase. Not only is this enzyme distributed in a polarized manner in a restricted domain of the plasma membrane but also it creates the ionic gradients that drive the net movement of glucose, amino acids, and ions across the entire epithelium. In a previous work, we have shown that Na+,K+-ATPase polarity depends on interactions between the β subunits of Na+,K+-ATPases located on neighboring cells and that these interactions anchor the entire enzyme at the borders of the intercellular space. In the present study, we used fluorescence resonance energy transfer and coprecipitation methods to demonstrate that these β subunits have sufficient proximity and affinity to permit a direct interaction, without requiring any additional extracellular molecules to span the distance. 相似文献
69.
Ronit Pinkas-Kramarski Reuven Stein Liora Lindenboim Mordechai Sokolovsky 《Journal of neurochemistry》1992,59(6):2158-2166
Rat pheochromocytoma (PC12) cells stably expressing cloned m1 muscarinic acetylcholine receptors (PC12M1) undergo morphological changes when stimulated by muscarinic agonists. These changes, which include the outgrowth of neurite-like processes, are blocked by the muscarinic antagonist atropine and are not observed in PC12 cells. The observed morphological changes, which are independent of RNA and protein synthesis, are blocked by the methylation inhibitor 5'-deoxy-5'-methylthioadenosine, suggesting that methylation plays a role in this process. Analysis of cyclic AMP accumulation and phosphoinositide turnover reveals that both processes are enhanced on activation by muscarinic agonist. Our data suggest, however, that the muscarinic-dependent neurite-like outgrowth processes are not mediated by cyclic AMP, Ca2+, or protein kinase C pathways. The muscarinic-dependent neurite outgrowth effect is enhanced by nerve growth factor, with a resulting increase in both the number of neurite-extending cells and the length of the neurite. In addition, activation of muscarinic receptors in PC12M1 cells stimulates the induction of marker genes for neuronal differentiation. Muscarinic receptors may therefore mediate growth factor-like effects in these cells. 相似文献
70.
This paper reviews the numerical dates available for the late Lower Paleolithic and early Middle Paleolithic in the Levant. We also present here new electron spin resonance dates for the late Lower Paleolithic sites of Holon, Yabrud I and Oumm Qatafa. Irrespective of dating techniques used, the ages of these sites converge on oxygen isotope stage 7 at roughly 215+/-30 ka. Similarly, dates for early Middle Paleolithic sites in the region, with the exception of Tabun, fall within oxygen isotope stage 7, suggesting a relatively rapid transition from Lower to Middle Paleolithic. In the light of these findings, the "early chronology" for the region, based on the TL dates on burned flint from Tabun, is discussed. 相似文献