首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   22篇
  327篇
  2022年   3篇
  2021年   14篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   17篇
  2014年   24篇
  2013年   11篇
  2012年   25篇
  2011年   26篇
  2010年   18篇
  2009年   12篇
  2008年   26篇
  2007年   23篇
  2006年   18篇
  2005年   16篇
  2004年   14篇
  2003年   16篇
  2002年   9篇
  2000年   2篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1985年   4篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1967年   4篇
  1966年   1篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
11.
Aims Studies of species distribution patterns traditionally have been conducted at a single scale, often overlooking species–environment relationships operating at finer or coarser scales. Testing diversity-related hypotheses at multiple scales requires a robust sampling design that is nested across scales. Our chief motivation in this study was to quantify the contributions of different predictors of herbaceous species richness at a range of local scales.Methods Here, we develop a hierarchically nested sampling design that is balanced across scales, in order to study the role of several environmental factors in determining herbaceous species distribution at various scales simultaneously. We focus on the impact of woody vegetation, a relatively unexplored factor, as well as that of soil and topography. Light detection and ranging (LiDAR) imaging enabled precise characterization of the 3D structure of the woody vegetation, while acoustic spectrophotometry allowed a particularly high-resolution mapping of soil CaCO 3 and organic matter contents.Important findings We found that woody vegetation was the dominant explanatory variable at all three scales (10, 100 and 1000 m 2), accounting for more than 60% of the total explained variance. In addition, we found that the species richness–environment relationship was scale dependent. Many studies that explicitly address the issue of scale do so by comparing local and regional scales. Our results show that efforts to conserve plant communities should take into account scale dependence when analyzing species richness–environment relationships, even at much finer resolutions than local vs. regional. In addition, conserving heterogeneity in woody vegetation structure at multiple scales is a key to conserving diverse herbaceous communities.  相似文献   
12.
13.
14.
Microglia, the resident immune cells of the CNS, are normally quiescent but become activated after infection or injury. Their properties then change, and they promote both repair and damage processes. The extent of microglial activation is regulated, in part, by activation-induced cell death (AICD). Although many apoptotic aspects of the microglial AICD mechanism have been elucidated, little is known about the connection between the activation step and the death process. Using mouse primary microglial cultures, we show that the ectoenzyme CD38, via its calcium-mobilizing metabolite cyclic-ADP-ribose (cADPR), helps promote microglial activation and AICD induced by LPS plus IFN-gamma (LPS/IFN-gamma), suggesting that CD38 links the two processes. Accordingly, CD38 expression and activity, as well as the intracellular calcium concentration ([Ca2+]i) in the primary microglia were increased by LPS/IFN-gamma treatment. Moreover, CD38 deficiency or treatment with cADPR antagonists conferred partial resistance to LPS/IFN-gamma-induced AICD and also reduced [Ca2+]i. Microglial activation, indicated by induced expression of NO synthase-2 mRNA and production of NO, secretion and mRNA expression of TNF-alpha and IL-12 p40, and expression of IL-6 mRNA, was attenuated by CD38 deficiency or cADPR-antagonist treatment. The observed effects of CD38 on microglial activation are probably mediated via a cADPR-dependent increase in [Ca2+]i and the effect on AICD by regulation of NO production. Our results thus suggest that CD38 significantly affects regulation of the amount and function of activated microglia, with important consequences for injury and repair processes in the brain.  相似文献   
15.
In a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private) alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken.  相似文献   
16.
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.  相似文献   
17.
18.
The ability of cells to coordinately migrate in groups is crucial to enable them to travel long distances during embryonic development, wound healing and tumorigenesis, but the fundamental mechanisms underlying intercellular coordination during collective cell migration remain elusive despite considerable research efforts. A novel analytical framework is introduced here to explicitly detect and quantify cell clusters that move coordinately in a monolayer. The analysis combines and associates vast amount of spatiotemporal data across multiple experiments into transparent quantitative measures to report the emergence of new modes of organized behavior during collective migration of tumor and epithelial cells in wound healing assays. First, we discovered the emergence of a wave of coordinated migration propagating backward from the wound front, which reflects formation of clusters of coordinately migrating cells that are generated further away from the wound edge and disintegrate close to the advancing front. This wave emerges in both normal and tumor cells, and is amplified by Met activation with hepatocyte growth factor/scatter factor. Second, Met activation was found to induce coinciding waves of cellular acceleration and stretching, which in turn trigger the emergence of a backward propagating wave of directional migration with about an hour phase lag. Assessments of the relations between the waves revealed that amplified coordinated migration is associated with the emergence of directional migration. Taken together, our data and simplified modeling-based assessments suggest that increased velocity leads to enhanced coordination: higher motility arises due to acceleration and stretching that seems to increase directionality by temporarily diminishing the velocity components orthogonal to the direction defined by the monolayer geometry. Spatial and temporal accumulation of directionality thus defines coordination. The findings offer new insight and suggest a basic cellular mechanism for long-term cell guidance and intercellular communication during collective cell migration.  相似文献   
19.
Transforming growth factor-β (TGF-β) ligands activate Smad-mediated and noncanonical signaling pathways in a cell context–dependent manner. Localization of signaling receptors to distinct membrane domains is a potential source of signaling output diversity. The tumor suppressor/endocytic adaptor protein disabled-2 (Dab2) was proposed as a modulator of TGF-β signaling. However, the molecular mechanism(s) involved in the regulation of TGF-β signaling by Dab2 were not known. Here we investigate these issues by combining biophysical studies of the lateral mobility and endocytosis of the type I TGF-β receptor (TβRI) with TGF-β phosphoprotein signaling assays. Our findings demonstrate that Dab2 interacts with TβRI to restrict its lateral diffusion at the plasma membrane and enhance its clathrin-mediated endocytosis. Small interfering RNA–mediated knockdown of Dab2 or Dab2 overexpression shows that Dab2 negatively regulates TGF-β–induced c-Jun N-terminal kinase (JNK) activation, whereas activation of the Smad pathway is unaffected. Moreover, activation of JNK by TGF-β in the absence of Dab2 is disrupted by cholesterol depletion. These data support a model in which Dab2 regulates the domain localization of TβRI in the membrane, balancing TGF-β signaling via the Smad and JNK pathways.  相似文献   
20.
The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection—the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号