首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   59篇
  2023年   2篇
  2022年   4篇
  2021年   19篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   11篇
  2016年   18篇
  2015年   31篇
  2014年   44篇
  2013年   37篇
  2012年   46篇
  2011年   44篇
  2010年   25篇
  2009年   18篇
  2008年   40篇
  2007年   34篇
  2006年   31篇
  2005年   32篇
  2004年   22篇
  2003年   28篇
  2002年   20篇
  2001年   13篇
  2000年   12篇
  1999年   11篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1992年   5篇
  1991年   8篇
  1990年   9篇
  1989年   4篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   9篇
  1984年   3篇
  1983年   6篇
  1981年   4篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1974年   4篇
  1973年   2篇
  1913年   1篇
  1911年   1篇
  1909年   1篇
排序方式: 共有679条查询结果,搜索用时 15 毫秒
31.
DNA-dependent protein kinase (DNA-PK) is part of the eukaryotic DNA double strand break repair pathway and as such is crucial for maintenance of genomic stability, as well as for V(D)J (variable-diversity-joining) recombination. The catalytic subunit of DNA-PK (DNA-PKcs) belongs to the phosphatidylinositol-3 (PI-3) kinase-like kinase (PIKK) superfamily and is comprised of approximately 4100 amino acids. We have used a novel repeat detection method to analyse this enormous protein and have identified two different types of helical repeat motifs in the N-terminal region of the sequence, as well as other previously unreported features in this repeat region. A comparison with the ATMs, ATRs, and TORs show that the features identified are likely to be conserved throughout the PIKK superfamily. Homology modelling of parts of the DNA-PKcs sequence has been undertaken and we have been able to fit the models to previously obtained electron microscopy data. This work provides an insight into the overall architecture of the DNA-PKcs protein and identifies regions of interest for further experimental studies.  相似文献   
32.
Epithelial cells in vivo form tight cell-cell associations that spatially separate distinct apical and basolateral domains. These domains provide discrete cellular processes essential for proper tissue and organ development. Using confocal imaging and selective plasma membrane domain activation, the type I and type II transforming growth factor-beta (TGFbeta) receptors were found to be localized specifically at the basolateral surfaces of polarized Madin-Darby canine kidney (MDCK) cells. Receptors concentrated predominantly at the lateral sites of cell-cell contact, adjacent to the gap junctional complex. Cytoplasmic domain truncations for each receptor resulted in the loss of specific lateral domain targeting and dispersion to both the apical and basal domains. Whereas receptors concentrate basolaterally in regions of direct cell-cell contact in nonpolarized MDCK cell monolayers, receptor staining was absent from areas of noncell contact. In contrast to the defined basolateral polarity observed for the TGFbeta receptor complex, TGFbeta ligand secretion was found to be from the apical surfaces. Confocal imaging of MDCK cells with an antibody to TGFbeta1 confirmed a predominant apical localization, with a stark absence at the basal membrane. These findings indicate that cell adhesion regulates the localization of TGFbeta receptors in polarized epithelial cultures and that the response to TGFbeta is dependent upon the spatial distribution and secretion of TGFbeta receptors and ligand, respectively.  相似文献   
33.
Assessment of early ultrastructural development and cell-cycle regulation in human cardiac tissue is significantly hampered by the lack of a suitable in vitro model. Here we describe the possible utilization of human embryonic stem cell (ES) lines for investigation of these processes. With the use of the embryoid body (EB) differentiation system, human ES cell-derived cardiomyocytes at different developmental stages were isolated and their histomorphometric, ultrastructural, and proliferative properties were characterized. Histomorphometric analysis revealed an increase in cell length, area, and length-to-width ratio in late-stage EBs (>35 days) compared with early (10-21 days) and intermediate (21-35 days) stages. This was coupled with a progressive ultrastructural development from an irregular myofibrillar distribution to an organized sarcomeric pattern. Cardiomyocyte proliferation, assessed by double labeling with cardiac-specific antibodies and either [3H]thymidine incorporation or Ki-67 immunolabeling, demonstrated a gradual withdrawal from cell cycle. Hence, the percentage of positively stained nuclei in early-stage cardiomyocytes ([3H]thymidine: 60 +/- 10%, Ki-67: 54 +/- 23%) decreased to 36 +/- 7% and 9 +/- 16% in intermediate-stage EBs and to <1% in late-stage cardiomyocytes. In conclusion, a reproducible temporal pattern of early cardiomyocyte proliferation, cell-cycle withdrawal, and ultrastructural maturation was noted in this model. Establishment of this unique in vitro surrogate system may allow to examine the molecular mechanisms underlying these processes and to assess interventions aiming to modify these properties. Moreover, the detailed characterization of the ES cell-derived cardiomyocyte may be crucial for the development of future cell replacement strategies aiming to regenerate functional myocardium.  相似文献   
34.
Variations in vascular anatomy in knockout mouse strains can influence infarct volume after middle cerebral artery (MCA) occlusion (MCAO). In wild-type (WT) and heme oxygenase-2 gene-deleted (HO2-/-) mice, infarcts were not reproducibly achieved with the standard intraluminal filament technique. The present study characterizes a double-filament model of MCAO, which was developed to produce consistent infarcts in both WT and HO2-/- mice. Diameters of most cerebral arteries were similar in WT and HO2-/- mice, although the posterior communicating artery size was variable. In halothane-anesthetized mice, two 6-0 monofilaments with blunted tips were inserted into the left internal carotid artery 6.0 and 4.5 mm past the pterygopalatine artery junction to reside distal and proximal to the origin of the MCA. The tissue "volume at risk" determined by brief dye perfusion in WT (59 +/- 2% of hemisphere; +/-SE) was similar to HO2-/- (62 +/- 4%). The volume of tissue with cerebral blood flow <50 ml.min(-1).100 g(-1) was similar in WT (35 +/- 9%) and HO2-/- (36 +/- 11%) during MCAO and at 3 h of reperfusion (<2%). After 1 h MCAO, infarct volume was greater in HO2-/- (44 +/- 6%) than WT (25 +/- 3%). After increasing MCAO duration to 2 h, the difference between HO2-/- (47 +/- 4%) and WT (36 +/- 3%) diminished, but infarct volume remained substantially less than the volume at risk. Infusion of tin protoporphyrin IX, an HO inhibitor, during reperfusion after 1 h MCAO increased infarct volume in WT but not significantly in HO2-/- mice, although infarct volume remained less than the volume at risk. Thus greater infarct volume in HO2-/- mice is not attributable to a greater volume at risk, lower intraischemic blood flow, or poor reflow, but rather to a neuroprotective effect of HO2 activity. The double-filament model may be of use as an alternative in other murine knockout strains in which the standard filament model does not yield consistent infarcts.  相似文献   
35.
The vascular system is unique in that extensive branching morphogenesis may take place in the adult. Developmental neovascularization is guided by precise spatial cues but vessel formation in the adult is not genetically programmed. Here, we review different adult modes for branch patterning, acquiring artery or vein identity and allocating vascular progenitor cells. The endothelium shows a remarkable degree of self-organization into a treelike network and hemodynamic forces are important in rectifying abnormal branching. This discussion is in the context of a contemplated therapy for improving organ perfusion by creating new vascular loops properly integrated within the existing network.  相似文献   
36.
Direct injection of venom by a predatory wasp into cockroach brain   总被引:4,自引:0,他引:4  
In this article, we provide direct evidence for injection of venom by a wasp into the central nervous system of its cockroach prey. Venomous predators use neurotoxins that generally act at the neuromuscular junction, resulting in different types of prey paralysis. The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces grooming behavior, followed by a long-term lethargic state of its insect prey, thus ultimately providing a living meal for the newborn wasp larvae. These behavioral modifications are induced only when a sting is inflicted into the head. These unique effects of the wasp venom on prey behavior suggest that the venom targets the insect's central nervous system. The mechanism by which behavior modifying compounds in the venom transverse the blood-brain barrier to induce these central and long-lasting effects has been the subject of debate. In this article, we demonstrate that the wasp stings directly into the target ganglia in the head of its prey. To prove this assertion, we produced "hot" wasps by injecting them with (14)C radiolabeled amino acids and used a combination of liquid scintillation and light microscopy autoradiography to trace radiolabeled venom in the prey. To our knowledge, this is the first direct evidence documenting targeted delivery of venom by a predator into the brain of its prey.  相似文献   
37.
The occurrence of n-saturated, branched, and unsaturated fatty acids of 3 wild terrestrial strains of the genus Chroococcidiopsis (Order Chroococcales): C. supralittoralis, C. umbratilis, and C. versatilis collected from Lake Kinneret, Dead Sea, and Ein Kerem (Jerusalem) was investigated and individual compounds identified by gas chromatography-mass spectrometry. Polar lipids also were examined. Among polar lipids (studied using two-dimensional thin-layer chromatography) were as major glycolipids isolated: monogalactosyl-diacylglycerols, digalactosyl-diacylglycerols, 6-sulfoquinovosyl-diacylglycerols and phosphatidylglycerol. Nonphosphorus betaine-containing lipid, viz. N,N,N-trimethylhomoserin-4-O-yl-diacylglycerol, was found for the first time in cyanobacterial species.  相似文献   
38.
The resumption of meiosis in Xenopus arrested oocytes is triggered by progesterone, which leads to polyadenylation and translation of Mos mRNA, then activation of MAPK pathway. While Mos protein kinase has been reported to be essential for re-entry into meiosis in Xenopus, arrested oocytes can undergo germinal vesicle breakdown (GVBD) independently of MAPK activation, leading us to question what the Mos target might be if Mos is still required. We now demonstrate that Mos is indeed necessary, although is independent of the MAPK cascade, for conversion of inactive pre-MPF into active MPF. We have found that Myt1 is likely to be the Mos target in this process, as Mos interacts with Myt1 in oocyte extracts and Mos triggers Myt1 phosphorylation on some sites in vivo, even in the absence of MAPK activation. We propose that Mos is involved, not only in the MAPK cascade pathway, but also in a mechanism that directly activates MPF in Xenopus oocytes.  相似文献   
39.
At the G2/M transition of the cell cycle, the cdc25c phosphatase dephosphorylates inhibitory residues of cdc2, and cyclin-B–cdc2 kinase (MPF) is activated. Phosphorylation of cyclin B1 induces its nuclear accumulation, and, since cdc25c is also believed to accumulate and activate shortly before G2/M in the nucleus, it has been proposed that this induces cyclin-B1–cdc2 kinase activation. We demonstrate that cyclin B1 phosphorylation has another essential function in vivo: it is required for cdc25c and MPF activation, which does not require nuclear accumulation of cyclin B1, and occurs in the cytoplasm.  相似文献   
40.
The pathological prion protein PrP(Sc) is the only known component of the infectious prion. In cells infected with prions, PrP(Sc) is formed posttranslationally by the refolding of the benign cell surface glycoprotein PrP(C) into an aberrant conformation. The two PrP isoforms possess very different properties, as PrP(Sc) has a protease-resistant core, forms very large amyloidic aggregates in detergents, and is only weakly immunoreactive in its native form. We now show that prion-infected rodent brains and cultured cells contain previously unrecognized protease-sensitive PrP(Sc) varieties. In both ionic (Sarkosyl) and nonionic (n-octyl beta-D-glucopyranoside) detergents, the novel protease-sensitive PrP(Sc) species formed aggregates as small as 600 kDa, as measured by gel filtration. The denaturation dependence of PrP(Sc) immunoreactivity correlated with the size of the aggregate. The small PrP(Sc) aggregates described here are consistent with the previous demonstration of scrapie infectivity in brain fractions with a sedimentation coefficient as small as 40 S [Prusiner et al. (1980) J. Neurochem. 35, 574-582]. Our results demonstrate for the first time that prion-infected tissues contain protease-sensitive PrP(Sc) molecules that form low MW aggregates. Whether these new PrP(Sc) species play a role in the biogenesis or the pathogenesis of prions remains to be established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号