首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1399篇
  免费   117篇
  国内免费   1篇
  2022年   8篇
  2021年   28篇
  2020年   21篇
  2019年   22篇
  2018年   23篇
  2017年   22篇
  2016年   35篇
  2015年   63篇
  2014年   75篇
  2013年   89篇
  2012年   102篇
  2011年   89篇
  2010年   77篇
  2009年   70篇
  2008年   93篇
  2007年   88篇
  2006年   71篇
  2005年   71篇
  2004年   66篇
  2003年   71篇
  2002年   47篇
  2001年   6篇
  2000年   5篇
  1998年   13篇
  1997年   13篇
  1995年   5篇
  1992年   5篇
  1988年   6篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1980年   5篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1973年   6篇
  1969年   5篇
  1967年   5篇
  1965年   7篇
  1962年   6篇
  1956年   6篇
  1938年   4篇
  1936年   5篇
  1927年   7篇
  1926年   4篇
  1920年   5篇
  1917年   4篇
  1908年   5篇
排序方式: 共有1517条查询结果,搜索用时 15 毫秒
91.
Organ-specific expression of a Cre recombinase allows the analysis of gene function in a particular tissue or cell type. Using a 6.1 kb promoter from the mouse tyrosinase gene, we generated and characterized two lines of transgenic mice that express Cre recombinase in melanoblasts. Utilizing a Cre-responsive reporter mouse strain, genetic recombination was detected in the melanoblasts of the skin from embryonic day 11.5. In addition, Cre-expression was detected in the skin and eyes of mice. Cre transgene activity was occasionally detected in the brain and peripheral nerves but not in other tissues. When Tyr::Cre mice were crossed with mice carrying a homozygous loxP conditional mutation for the insulin-like growth factor receptor gene (Igf1r), Cre-melanoblast-specific recombination pattern was confirmed and no abnormal phenotype was observed. In conclusion, Tyr::Cre transgenic mice provide a valuable tool to follow the cell lineage and to examine gene function in melanocyte development and transformation.  相似文献   
92.
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.  相似文献   
93.
Multiple alterations of G-protein-coupled receptors and G-proteins regulating intracellular transduction signal have been described in endocrine tumours. In Cushing's syndrome, aberrant or 'illicit' expression of membrane receptors (mainly G-protein-coupled receptors) has been observed in adrenal adenomas and adrenocorticotropic hormone (ACTH)-independent macronodular bilateral adrenal hyperplasia. The best characterized example to date is the aberrant expression of the gastric inhibitory polypeptide receptor that causes 'food-dependent hypercortisolism'. Aberrant expression of the luteinizing hormone, 2-adrenergic, interleukin receptors have also been reported. The level of expression of the vasopressin V1a receptor correlates with the direct (ACTH-independent) cortisol response to vasopressin.  相似文献   
94.
95.
Apis mellifera is composed of three evolutionary branches including mainly African (branch A), western and northern European (branch M), and southeastern European (branch C) populations. The existence of morphological clines extending from the equator to the Polar Circle through Morocco and Spain raised the hypothesis that the branch M originated in Africa. Mitochondrial DNA analysis revealed that branches A and M were characterized by highly diverged lineages implying very remote links between both branches. It also revealed that mtDNA haplotypes from lineages A coexisted with haplotypes M in the Iberian Peninsula and formed a south-north frequency cline, suggesting that this area could be a secondary contact zone between the two branches. By analyzing 11 populations sampled along a France-Spain/Portugal-Morocco-Guinea transect at 8 microsatellite loci and the DraI RFLP of the COI-COII mtDNA marker, we show that Iberian populations do not present any trace of “africanization” and are very similar to French populations when considering microsatellite markers. Therefore, the Iberian Peninsula is not a transition area. The higher haplotype A variability observed in Spanish and Portuguese samples compared to that found in Africa is explained by a higher mutation rate and multiple and recent introductions. Selection appears to be the best explanation to the morphological and allozymic clines and to the diffusion and maintenance of African haplotypes in Spain and Portugal.  相似文献   
96.
Expression of GABA Receptor ρ Subunits in Rat Brain   总被引:2,自引:1,他引:1  
Abstract: The GABA receptor ρ1, ρ2, and ρ3 subunits are expressed in the retina where they form bicuculline-insensitive GABAC receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of ρ subunits in rat brains. In situ hybridization allowed us to detect ρ-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABAC receptors, ρ2 and ρ1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABAC receptors, ρ2 mRNA is enriched relative to ρ1 mRNA. These results suggest that both ρ1 and ρ2 subunits are necessary to form a functional GABAC receptor. The use of RT-PCR also showed that, except in the superior colliculus, ρ3 is expressed along with ρ1 and ρ2 subunits. We also raised an antibody against a peptide sequence unique to the ρ1 subunit. The use of this antibody on cerebellum revealed the rat ρ1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABAC receptor subunits to identified neurons paves the way for future electrophysiological studies.  相似文献   
97.
98.
The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK) suppressed senescence in hydrogen peroxide (H2O2)-treated human primary keratinocytes, a model of oxidative stress-induced cellular aging. Using this model in the present study, we observed that resveratrol, an agent that increases the activities of both AMPK and sirtuins, ameliorated two age-associated phenotypes: cellular senescence and proliferative dysfunction. In addition, we found that treatment of keratinocytes with Ex527, a specific inhibitor of sirtuin 1 (SIRT1), attenuated the ability of resveratrol to suppress senescence. In keeping with the latter observation, we noted that compared to non-senescent keratinocytes, senescent cells lacked SIRT1. In addition to these effects on H2O2-induced senescence, resveratrol also prevented the H2O2-induced decrease in proliferation (as indicated by 3H-thymidine incorporation) in the presence of insulin. This effect was abrogated by inhibition of AMPK but not SIRT1. Compared to endothelium, we found that human keratinocytes expressed relatively high levels of Forkhead box O3 (FOXO3), a downstream target of both AMPK and SIRT1. Treatment of keratinocytes with resveratrol transactivated FOXO3 and increased the expression of its target genes including catalase. Resveratrol’s effects on both senescence and proliferation disappeared when FOXO3 was knocked down. Finally, we performed an exploratory study which showed that skin from humans over 50 years old had lower AMPK activity than skin from individuals under age 20. Collectively, these findings suggest that the effects of resveratrol on keratinocyte senescence and proliferation are regulated by the AMPK-FOXO3 pathway and in some situations, but not all, by SIRT1.  相似文献   
99.
100.
In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses increases susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 is dispensable for antiviral immunity. Hence, a higher redundancy has been proposed in the mechanisms promoting protective immune responses against systemic infections by herpes viruses during natural infections in humans. It has been assumed, but not proven, that mice fail to mount protective MyD88-independent IFN-I responses. In humans, the mechanism that compensates MyD88 deficiency has not been elucidated. To address these issues, we compared resistance to MCMV infection and immune responses between mouse strains deficient for MyD88, the IFN-I receptor and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 or TLR9 drastically decreased production of IFN-I, but not the protective antiviral responses. Moreover, MyD88, but not IFN-I receptor, deficiency could largely be compensated by Ly49H-mediated antiviral NK cell responses. Thus, contrary to the current dogma but consistent with the situation in humans, we conclude that, in mice, in our experimental settings, MyD88 is redundant for IFN-I responses and overall defense against a systemic herpes virus infection. Moreover, we identified direct NK cell sensing of infected cells as one mechanism able to compensate for MyD88 deficiency in mice. Similar mechanisms likely contribute to protect MyD88- or IRAK4-deficient patients from viral infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号