首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1403篇
  免费   117篇
  国内免费   1篇
  1521篇
  2022年   10篇
  2021年   28篇
  2020年   21篇
  2019年   22篇
  2018年   23篇
  2017年   22篇
  2016年   35篇
  2015年   63篇
  2014年   75篇
  2013年   89篇
  2012年   102篇
  2011年   89篇
  2010年   77篇
  2009年   70篇
  2008年   93篇
  2007年   88篇
  2006年   71篇
  2005年   71篇
  2004年   66篇
  2003年   72篇
  2002年   47篇
  2001年   7篇
  2000年   5篇
  1998年   13篇
  1997年   13篇
  1995年   5篇
  1992年   5篇
  1988年   6篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1980年   5篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1973年   6篇
  1969年   5篇
  1967年   5篇
  1965年   7篇
  1962年   6篇
  1956年   6篇
  1938年   4篇
  1936年   5篇
  1927年   7篇
  1926年   4篇
  1920年   5篇
  1917年   4篇
  1908年   5篇
排序方式: 共有1521条查询结果,搜索用时 15 毫秒
51.
BACKGROUND: Identification of high-grade meningiomas in preoperative magnetic resonance imaging (MRI) is important for optimized surgical strategy and best possible resection. Numerous studies investigated subjectively determined morphological features as predictors of tumor biology in meningiomas. The aim of this study was to identify the predictive value of more reliable, quantitatively measured signal intensities in MRI for differentiation of high- and low-grade meningiomas and identification of meningiomas with high proliferation rates, respectively. PATIENTS AND METHODS: Sixty-six patients (56 World Health Organization [WHO] grade I, 9 WHO grade II, and 1 WHO grade I) were included in the study. Preoperative MRI signal intensities (fluid-attenuated inversion recovery [FLAIR], T1 precontrast, and T1 postcontrast as genuine and normalized values) were correlated with Ki-67 expression in tissue sections of resected meningiomas. Differences between the groups (analysis of variance) and Spearman rho correlation were computed using SPSS 22. RESULTS: Mean values of genuine signal intensities of meningiomas in FLAIR, T1 native, and T1 postcontrast were 323.9 ± 59, 332.8 ± 67.9, and 768.5 ± 165.3. Mean values of normalized (to the contralateral white matter) signal intensities of meningiomas in FLAIR, T1 native, and T1 postcontrast were 1.5 ± 0.3, 0.8 ± 0.1, and 1.9 ± 0.4. There was no significant correlation between MRI signal intensities and WHO grade or Ki-67 expression. Signal intensities did not differ significantly between WHO grade I and II/III meningiomas. Ki-67 expression was significantly increased in high-grade meningiomas compared with low-grade meningiomas (P < 0.01). Objectively measured values of MRI signal intensities (FLAIR, T1 precontrast, and T1 postcontrast enhancement) did not distinguish between high-grade and low-grade meningiomas. Furthermore, there was no association between MRI signal intensities and Ki-67 expression representing proliferative activity.Meningiomas are among the most common brain tumors. Their incidence is about 1%, and they account for almost one third of all primary intracranial masses. The majority of meningiomas are very slowly growing and nonsymptomatic or minimally symptomatic entities, discovered as incidental findings on neuroimaging [1]. The World Health Organization (WHO) classification system distinguishes 3 histological grades and 15 subtypes and is a well-accepted tool for prediction of prognosis. Although most meningiomas are benign masses, certain histological subtypes reveal very high recurrence rates despite the tumors’ seemingly total removal. Grade II (atypical) and grade III (anaplastic) meningiomas are associated with an increased risk of recurrence, are more aggressive, and show invasive behavior [2]. Grade I meningiomas are generally considered as benign tumors, but recent studies indicate substantial neurological deficits and impaired long-term survival due to tumor recurrence and stroke despite their low histopathological grading in a considerable proportion of cases [3], [4]. Increased mitotic activity (more than 4 mitoses per 10 high-power fields) and elevated Ki-67 expression (Ki-67 index of more than 5% of nuclei) are reliable histopathological markers for tumor recurrence [2].Because histopathological grading alone does not predict outcome satisfyingly, numerous studies investigated the value of preoperative magnetic resonance imaging (MRI) for prognostics. For example, Liu et al. demonstrated that hyperintensity on diffusion-weighted imaging, heterogeneous gadolinium enhancement, disruption of the arachnoid at brain tumor interface, T2 hyperintense peritumoral edema, and irregular tumor shape were independent predictors of non–grade I meningioma [5]. Other works produced comparable results, although some of these studies underline the importance of positive capsular enhancement [6], [7], whereas others emphasize the predictive value of peritumoral edema [5], [8]. All the above-cited works investigated morphological features of meningiomas summarized in subjective scoring systems, but not one of the studies objectively analyzed values of SIs in commonly used preoperative MRI sequences.Therefore, the aim of this study was to investigate the predictive value of genuine and normalized SIs of standardized preoperative MRI (T1 pre- and postcontrast, T2, and fluid-attenuated inversion recovery [FLAIR]) as in vivo predictors of proliferative activity of meningiomas.  相似文献   
52.

Background

Epidemic dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) are overwhelming public health capacity for diagnosis and clinical care of dengue patients throughout the tropical and subtropical world. The ability to predict severe dengue disease outcomes (DHF/DSS) using acute phase clinical specimens would be of enormous value to physicians and health care workers for appropriate triaging of patients for clinical management. Advances in the field of metabolomics and analytic software provide new opportunities to identify host small molecule biomarkers (SMBs) in acute phase clinical specimens that differentiate dengue disease outcomes.

Methodology/Principal Findings

Exploratory metabolomic studies were conducted to characterize the serum metabolome of patients who experienced different dengue disease outcomes. Serum samples from dengue patients from Nicaragua and Mexico were retrospectively obtained, and hydrophilic interaction liquid chromatography (HILIC)-mass spectrometry (MS) identified small molecule metabolites that were associated with and statistically differentiated DHF/DSS, DF, and non-dengue (ND) diagnosis groups. In the Nicaraguan samples, 191 metabolites differentiated DF from ND outcomes and 83 differentiated DHF/DSS and DF outcomes. In the Mexican samples, 306 metabolites differentiated DF from ND and 37 differentiated DHF/DSS and DF outcomes. The structural identities of 13 metabolites were confirmed using tandem mass spectrometry (MS/MS). Metabolomic analysis of serum samples from patients diagnosed as DF who progressed to DHF/DSS identified 65 metabolites that predicted dengue disease outcomes. Differential perturbation of the serum metabolome was demonstrated following infection with different DENV serotypes and following primary and secondary DENV infections.

Conclusions/Significance

These results provide proof-of-concept that a metabolomics approach can be used to identify metabolites or SMBs in serum specimens that are associated with distinct DENV infections and disease outcomes. The differentiating metabolites also provide insights into metabolic pathways and pathogenic and immunologic mechanisms associated with dengue disease severity.  相似文献   
53.

Background

Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine.

Methodology/Principal Findings

Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M’sila where P. (Phlebotomus) papatasi was the only sand fly species detected.

Conclusion

The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases.  相似文献   
54.
The gastrointestinal (GI) peptide gastrin is an important regulator of the release of gastric acid from the stomach parietal cells and it also plays an important role in growth of the gastrointestinal tract. It has become apparent that gastrin and its related peptide cholecystokinin (CCK) are also significantly involved with growth of GI cancers as well as other malignancies through activation of the cholecystokinin-B (CCK-B) receptor. Of interest, gastrin is expressed in the embryologic pancreas but not in the adult pancreas; however, gastrin becomes re-expressed in pancreatic cancer where it stimulates growth of this malignancy by an autocrine mechanism. Strategies to down-regulate gastrin or interfere with its interface with the CCK receptor with selective antibodies or receptor antagonists hold promise for the treatment of pancreatic cancer and other gastrin - responsive tumors.  相似文献   
55.
Actinopterygii (ray‐finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of ‘fish’ evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic–Cainozoic interval. This approach provides information on the ‘fish’ fossil record quality and on the corrected ‘fish’ deep‐time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil‐like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early–Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene–Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous‐Paleogene extinction, we provide an in‐depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea‐levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on ‘fish’ evolutionary history, along with other biotic constraints.  相似文献   
56.
African mole-rats are fossorial rodents that consist of five chisel-tooth digging genera (Heterocephalus, Heliophobius, Georychus, Fukomys, and Cryptomys) and one scratch digger (Bathyergus). They are characterized by striking physiological, morphological, and behavioral adaptations intimately related to their subterranean life. The influence of their mode of life in shaping the cranial morphology has yet to be evaluated in comparison to other Ctenohystrica, especially fossorial genera, which include the subterranean genera Spalacopus and Ctenomys. In our study, we seek to determine to what extent subterranean life affects the morpho-functional properties of the skull among fossorial ctenohystricans. 3D geometric morphometric analyses were performed on 277 skulls, encompassing 63 genera of Ctenohystrica, and complemented by biomechanical studies. African mole-rats and other subterranean Ctenohystrica, especially chisel-tooth diggers, have a short snout, a wide cranium with enlarged zygomatic arches, and a strongly hystricognathous mandible. Even if convergences are also manifest between most fossorial Ctenohystrica, subterranean rodents departed from the main ctenohystrican allometric trends in having a skull shape less size-dependent, but under stronger directional selection with intense digging activity as a major constraint. African mole-rats, notably chisel-tooth diggers, show important mechanical advantage for the temporalis muscles favoring higher forces at the bite point, while mechanical advantage of the superficial masseter muscles is lower compared to other Ctenohystrica. If subterranean species can be clearly discriminated based on their skull morphology, the intrinsic mosaic of anatomical characters of each genus (e.g., skull, teeth, and muscles) can be understood only in the light of their ecology and evolutionary history.  相似文献   
57.
Reviews in Fish Biology and Fisheries - Since 2015, the European Union gradually implemented the landing obligation (LO). This prohibits at-sea discarding of species under total allowable catch...  相似文献   
58.
The flea’s lumen gut is a poorly documented environment where the agent of flea‐borne plague, Yersinia pestis, must replicate to produce a transmissible infection. Here, we report that both the acidic pH and osmolarity of the lumen’s contents display simple harmonic oscillations with different periods. Since an acidic pH and osmolarity are two of three known stimuli of the OmpR‐EnvZ two‐component system in bacteria, we investigated the role and function of this Y. pestis system in fleas. By monitoring the in vivo expression pattern of three OmpR‐EnvZ‐regulated genes, we concluded that the flea gut environment triggers OmpR‐EnvZ. This activation was not, however, correlated with changes in pH and osmolarity but matched the pattern of nutrient depletion (the third known stimulus for OmpR‐EnvZ). Lastly, we found that the OmpR‐EnvZ and the OmpF porin are needed to produce the biofilm that ultimately obstructs the flea’s gut and thus hastens the flea‐borne transmission of plague. Taken as a whole, our data suggest that the flea gut is a complex, fluctuating environment in which Y. pestis senses nutrient depletion via OmpR‐EnvZ. Once activated, the latter triggers a molecular program (including at least OmpF) that produces the biofilm required for efficient plague transmission.  相似文献   
59.
Analysis of the NK cell developmental pathway suggests that CD2 expression may be important in regulating NK maturation. To test this hypothesis, we developed mice containing only an inhibitory CD2 molecule by linking the extracellular domain of CD2 to an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM) motif. Mice containing the CD2 Tg(ITIM) transgene, introduced into a CD2 KO background, have no morphologically detectable lymph nodes, although development of the thymus appears normal. In addition, these mice had major loss of both NK and NKT subsets in peripheral organs, while T and B cell frequencies were intact. Expression of CD2 was low on T cells and lacking on B cells and functional defects were observed in these populations. NKT cells expressing CD4 were absent, while the CD8+ and double negative NKT cells were retained. Small subsets of NK cells were detected but expression of CD2 on these cells was very low or absent, and their maturation was impaired. Based on the phenotype described here, we believe that these mice represent a unique model to study lymphoid organ and lymphocyte development.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号