全文获取类型
收费全文 | 1403篇 |
免费 | 118篇 |
国内免费 | 1篇 |
专业分类
1522篇 |
出版年
2022年 | 10篇 |
2021年 | 28篇 |
2020年 | 21篇 |
2019年 | 22篇 |
2018年 | 23篇 |
2017年 | 22篇 |
2016年 | 35篇 |
2015年 | 63篇 |
2014年 | 75篇 |
2013年 | 90篇 |
2012年 | 102篇 |
2011年 | 90篇 |
2010年 | 77篇 |
2009年 | 70篇 |
2008年 | 93篇 |
2007年 | 88篇 |
2006年 | 72篇 |
2005年 | 71篇 |
2004年 | 66篇 |
2003年 | 71篇 |
2002年 | 47篇 |
2001年 | 6篇 |
2000年 | 5篇 |
1998年 | 13篇 |
1997年 | 13篇 |
1995年 | 5篇 |
1992年 | 5篇 |
1988年 | 6篇 |
1986年 | 5篇 |
1985年 | 5篇 |
1984年 | 5篇 |
1983年 | 7篇 |
1982年 | 6篇 |
1980年 | 5篇 |
1979年 | 7篇 |
1978年 | 7篇 |
1976年 | 5篇 |
1973年 | 6篇 |
1969年 | 5篇 |
1967年 | 5篇 |
1965年 | 7篇 |
1962年 | 6篇 |
1956年 | 6篇 |
1938年 | 4篇 |
1936年 | 5篇 |
1927年 | 7篇 |
1926年 | 4篇 |
1920年 | 5篇 |
1917年 | 4篇 |
1908年 | 5篇 |
排序方式: 共有1522条查询结果,搜索用时 15 毫秒
31.
Freshwater Bacteria Can Methylate Selenium through the Thiopurine Methyltransferase Pathway 下载免费PDF全文
Involvement of the bacterial thiopurine methyltransferase (bTPMT) in natural selenium methylation by freshwater was investigated. A freshwater environment that had no known selenium contamination but exhibited reproducible emission of dimethyl selenide (DMSe) or dimethyl diselenide (DMDSe) when it was supplemented with an organic form of selenium [(methyl)selenocysteine] or an inorganic form of selenium (sodium selenite) was used. The distribution of the bTPMT gene (tpm) in the microflora was studied. Freshwater bacteria growing on 10 μM sodium selenite and 10 μM sodium selenate were isolated, and 4.5 and 10% of the strains, respectively, were shown by colony blot hybridization to hybridize with a Pseudomonas syringae tpm DNA probe. Ribotyping showed that these strains are closely related. The complete rrs sequence of one of the strains, designated Hsa.28, was obtained and analyzed. Its closest phyletic neighbor was found to be the Pseudomonas anguilliseptica rrs sequence. The Hsa.28 strain grown with sodium selenite or (methyl)selenocysteine produced significant amounts of DMSe and DMDSe. The Hsa.28 tpm gene was isolated by genomic DNA library screening and sequencing. BLASTP comparisons of the deduced Hsa.28 bTPMT sequence with P. syringae, Pseudomonas aeruginosa, Vibrio cholerae, rat, and human thiopurine methyltransferase sequences revealed that the levels of similarity were 52 to 71%. PCR-generated Escherichia coli subclones containing the Hsa.28 tpm open reading frame were constructed. E. coli cells harboring the constructs and grown with sodium selenite or (methyl)selenocysteine produced significant levels of DMSe and DMDSe, confirming that the gene plays a role in selenium methylation. The effect of strain Hsa.28 population levels on freshwater DMSe and DMDSe emission was investigated. An increase in the size of the Hsa.28 population was found to enhance significantly the emission of methyl selenides by freshwater samples supplemented with sodium selenite or (methyl)selenocysteine. These data suggest that bTPMT can play a role in natural freshwater selenium methylation processes. 相似文献
32.
Trivelli X Krimm I Ebel C Verdoucq L Prouzet-Mauléon V Chartier Y Tsan P Lauquin G Meyer Y Lancelin JM 《Biochemistry》2003,42(48):14139-14149
Peroxiredoxins (Prx's) are a superfamily of thiol-specific antioxidant proteins present in all organisms and involved in the hydroperoxide detoxification of the cell. The catalytic cysteine of Prx's reduces hydroperoxides and is transformed into a transient sulfenic acid (Cys-SOH). At high hydroperoxide concentration, the sulfenic acid can be overoxidized into a sulfinate, or even a sulfonate. We present here the first peroxiredoxin characterization by solution NMR of the Saccharomyces cerevisiae alkylhydroperoxide reductase (Ahp1) in its reduced and in vitro overoxidized forms. NMR (15)N relaxation data and ultracentrifugation experiments indicate that the protein behaves principally as a homodimer (2 x 19 kDa) in solution, regardless of the redox state. In vitro treatment of Ahp1 by a large excess of tBuOOH leads to an inactive form, with the catalytic cysteine overoxidized into sulfonate, as demonstrated by (13)C NMR. Depending on the amino acid sequence of their active site, Prx's are classified into five different families. In this classification, Ahp1 is a member of the scarcely studied D-type Prx's. Ahp1 is unique among the D-type Prx's in its ability to form an intermolecular disulfide. The peptidic sequence of Ahp1 was analyzed and compared to other D-type Prx sequences. 相似文献
33.
Fran?oise Vilaine Pavel Kerchev Gilles Clément Brigitte Batailler Thibaud Cayla Laurence Bill Lionel Gissot Sylvie Dinant 《The Plant cell》2013,25(5):1689-1708
The complex process of phloem sugar transport involves symplasmic and apoplasmic events. We characterized Arabidopsis thaliana lines ectopically expressing a phloem-specific gene encoding NDR1/HIN1-like26 (NHL26), a putative membrane protein. NHL26 overexpressor plants grew more slowly than wild-type plants, accumulated high levels of carbohydrates in mature leaves, and had a higher shoot biomass, contrasting with slower root growth and a lower seed yield. Similar effects were observed when NHL26 was overexpressed in companion cells, under the control of a companion cell–specific promoter. The soluble sugar content of the phloem sap and sink organs was lower than that in the wild type, providing evidence of a sugar export defect. This was confirmed in a phloem-export assay with the symplastic tracer carboxyfluorescein diacetate. Leaf sugar accumulation was accompanied by higher organic acid, amino acid, and protein contents, whereas analysis of the metabolite profile of phloem sap exudate revealed no change in amino acid or organic acid content, indicating a specific effect on sugar export. NHL26 was found to be located in the phloem plasmodesmata and the endoplasmic reticulum. These findings reveal that NHL26 accumulation affects either the permeability of plasmodesmata or sugar signaling in companion cells, with a specific effect on sugar export. 相似文献
34.
Beno?t de Chassey Anne Aublin-Gex Alessia Ruggieri Laurène Meyniel-Schicklin Fabrine Pradezynski Nathalie Davoust Thibault Chantier Lionel Tafforeau Philippe-Emmanuel Mangeot Claire Ciancia Laure Perrin-Cocon Ralf Bartenschlager Patrice André Vincent Lotteau 《PLoS pathogens》2013,9(7)
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution. 相似文献
35.
36.
Storme T Mercier L Deroussent A Re M Martens T Royer J Bourget P Vassal G Paci A 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2005,820(2):251-259
A specific and sensitive quantitative assay has been developed using high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) for the simultaneous quantitation of the antitumor drug ifosfamide (IFM) and its two metabolites, N2-deschloroethylifosfamide (N2-DCE-IFM) and N3-deschloroethylifosfamide (N3-DCE-IFM) in microsomal medium. The analytes and the internal standard (cyclophosphamide) were isolated by ethylacetate extraction from rat liver microsomes. They were analysed on a Nucleosil C18 HD column (125 mm x 4 mm, 5 microm) using a step gradient with the mobile phase (2 mM ammonium formate and methanol). The HPLC-ESI-MS method used selected ion monitoring of ions m/z 199.1 Th and m/z 261.1 Th and was validated in the concentrations ranges of 100-5000 ng/mL for IFM and 50-2500 ng/mL for its N-deschloroethylated metabolites (DCE-IFM) with good accuracy and precision (CV less than 15%). The low limits of quantitation (LLOQ) were found at 50 ng/mL for N-deschloroethylated metabolites and at 100 ng/mL for the parent drug (IFM). The method was applied for the determination of ifosfamide and its N-deschloroethylated metabolites in rat microsomal incubations. 相似文献
37.
The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5' position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the enzyme that hydroxylates the 5' position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3'5'H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3'5'H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3'5'H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species. 相似文献
38.
Muriel Vayssier-Taussat Danielle Le Rhun Hong Kuan Deng Francis Biville Sandra Cescau Antoine Danchin Geneviève Marignac Evelyne Lenaour Henri Jean Boulouis Maria Mavris Lionel Arnaud Huanming Yang Jing Wang Maxime Quebatte Philipp Engel Henri Saenz Christoph Dehio 《PLoS pathogens》2010,6(6)
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. 相似文献
39.
40.
We previously reported that tumour necrosis factor alpha (TNFalpha) can mimic classic ischemic preconditioning (IPC) in both cells and heart. However, the signalling pathways involved remain incompletely understood. One potential protective pathway could be TNFalpha-induced reactive oxygen species (ROS). We hypothesized that TNFalpha cytoprotection occurs through the generation of ROS which originate within the mitochondria. C(2)C(12) myotubes were preconditioned with either a short period of hypoxia (IPC) or a low concentration of TNFalpha (0.5 ng/ml) prior to a simulated ischemic insult. ROS generation was evaluated on cells stained with dichlorofluorescin diacetate (DCFH-DA) by flow cytometry. The source of TNFalpha-induced ROS was examined with Mitotracker Red CM-H(2)XRos. The bioenergetics of the mitochondria were evaluated by investigation of the respiratory parameters and the inner mitochondrial membrane potential. Pretreatment with TNFalpha improved cell viability compared with the simulated ischemic control (TNFalpha: 75 +/- 1% versus 34 +/- 1% for the control: p<0.001). The ROS scavenger, N-2-mercaptopropionyl-glycine (MPG), reduced the viability of TNFalpha-stimulated cells to 15 +/- 1% (p<0.001 versus TNFalpha). Similar results were obtained with IPC. TNFalpha stimulation increased ROS production mainly in the mitochondria, and this increase was abolished in the presence of MPG. Addition of TNFalpha to the cells increased State 2 respiration and modestly depolarised the membrane potential prior to the ischemic insult. In conclusion, TNFalpha-induced ROS generation can occur within the mitochondria, resulting in temporal mitochondrial perturbations which may initiate the cytoprotective effect of TNFalpha. 相似文献