首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1406篇
  免费   118篇
  国内免费   1篇
  2022年   10篇
  2021年   28篇
  2020年   21篇
  2019年   22篇
  2018年   23篇
  2017年   22篇
  2016年   35篇
  2015年   63篇
  2014年   75篇
  2013年   89篇
  2012年   102篇
  2011年   89篇
  2010年   78篇
  2009年   70篇
  2008年   93篇
  2007年   88篇
  2006年   71篇
  2005年   71篇
  2004年   66篇
  2003年   71篇
  2002年   47篇
  2001年   6篇
  2000年   6篇
  1998年   14篇
  1997年   13篇
  1995年   6篇
  1992年   5篇
  1991年   5篇
  1988年   6篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1980年   5篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1973年   6篇
  1969年   5篇
  1967年   5篇
  1965年   7篇
  1962年   6篇
  1956年   6篇
  1936年   5篇
  1927年   7篇
  1926年   4篇
  1920年   5篇
  1917年   4篇
  1908年   5篇
排序方式: 共有1525条查询结果,搜索用时 16 毫秒
981.
Pathological hormone imbalances   总被引:7,自引:0,他引:7  
Plant hormones play important roles in regulating developmental processes and signalling networks involved in plant responses to a wide range of biotic and abiotic stresses. Salicylic acid (SA), jasmonates (JA) and ethylene (ET) are well known to play crucial roles in plant disease and pest resistance. However, the roles of other hormones such as abscisic acid (ABA), auxin, gibberellin (GA), cytokinin (CK) and brassinosteroid (BL) in plant defence are less well known. Much progress has been made in understanding plant hormone signalling and plant disease resistance. However, these studies have mostly proceeded independently of each other, and there is limited knowledge regarding interactions between plant hormone-mediated signalling and responses to various pathogens. Here, we review the roles of hormones other than SA, JA and ET in plant defence and the interactions between hormone-mediated signalling, plant defence and pathogen virulence. We propose that these hormones may influence disease outcomes through their effect on SA or JA signalling.  相似文献   
982.
Bone morphogenetic proteins (BMPs) act as multifunctional regulators in morphogenesis during development. In particular they play a determinant role in the formation of cartilage molds and their replacement by bone during endochondral ossification. In cell culture, BMP-2 favors chondrogenic expression and promotes hypertrophic maturation of chondrocytes. In mouse chondrocytes we have identified a BMP-2-sensitive gene encoding a protein of 301 amino acids. This protein, named mIFT46, is the mouse ortholog of recently identified Caenorhabditis elegans and Chlamydomonas reinhardtii intraflagellar transport (IFT) proteins. After generation of a polyclonal antibody against mIFT46, we showed for the first time that the endogenous protein is located in the primary cilium of chondrocytes. We also found that mIFT46 is preferentially expressed in early hypertrophic chondrocytes located in the growth plate. Additionally, mIFT46 knockdown by small interfering RNA oligonucleotides in cultured chondrocytes specifically stimulated the expression of several genes related to skeletogenesis. Furthermore, Northern blotting analysis indicated that mIFT46 is also expressed before chondrogenesis in embryonic mouse development, suggesting that the role of mIFT46 might not be restricted to cartilage. To explore the role of IFT46 during early development, we injected antisense morpholino oligonucleotides in Danio rerio embryos to reduce zebrafish IFT46 protein (zIFT46) synthesis. Dramatic defects in embryonic development such as a dorsalization and a tail duplication were observed. Thus our results taken together indicate that the ciliary protein IFT46 has a specific function in chondrocytes and is also essential for normal development of vertebrates.  相似文献   
983.
We report here the first direct assessment of the specificity of a class of peptidoglycan cross-linking enzymes, the L,D-transpeptidases, for the highly diverse structure of peptidoglycan precursors of Gram-positive bacteria. The lone functionally characterized member of this new family of active site cysteine peptidases, Ldt(fm) from Enterococcus faecium, was previously shown to bypass the D,D-transpeptidase activity of the classical penicillin-binding proteins leading to high level cross-resistance to glycopeptide and beta-lactam antibiotics. Ldt(fm) homologues from Bacillus subtilis (Ldt(Bs)) and E. faecalis (Ldt(fs)) were found here to cross-link their cognate disaccharide-peptide subunits containing meso-diaminopimelic acid (mesoDAP(3)) and L-Lys(3)-L-Ala-L-Ala at the third position of the stem peptide, respectively, instead of L-Lys(3)-d-iAsn in E. faecium. Ldt(fs) differed from Ldt(fm) and Ldt(Bs) by its capacity to hydrolyze the L-Lys(3)-D-Ala(4) bond of tetrapeptide (L,D-carboxypeptidase activity) and pentapeptide (L,D-endopeptidase activity) stems, in addition to the common cross-linking activity. The three enzymes were specific for their cognate acyl acceptors in the cross-linking reaction. In contrast to Ldt(fs), which was also specific for its cognate acyl donor, Ldt(fm) tolerated substitution of L-Lys(3)-D-iAsn by L-Lys(3)-L-Ala-L-Ala. Likewise, Ldt(Bs) tolerated substitution of mesoDAP(3) by L-Lys(3)-D-iAsn and L-Lys(3)-L-Ala-L-Ala in the acyl donor. Thus, diversification of the structure of peptidoglycan precursors associated with speciation has led to a parallel evolution of the substrate specificity of the L,D-transpeptidases affecting mainly the recognition of the acyl acceptor. Blocking the assembly of the side chain could therefore be used to combat antibiotic resistance involving L,D-transpeptidases.  相似文献   
984.
985.
Adaphostin is a dihydroquinone derivative that is undergoing extensive preclinical testing as a potential anticancer drug. Previous studies have suggested that the generation of reactive oxygen species (ROS) plays a critical role in the cytotoxicity of this agent. In this study, we investigated the source of these ROS. Consistent with the known chemical properties of dihydroquinones, adaphostin simultaneously underwent oxidation to the corresponding quinone and generated ROS under aqueous conditions. Interestingly, however, this quinone was not detected in intact cells. Instead, high performance liquid chromatography demonstrated that adaphostin was concentrated by up to 300-fold in cells relative to the extracellular medium and that the highest concentration of adaphostin (3000-fold over extracellular concentrations) was detected in mitochondria. Consistent with a mitochondrial site for adaphostin action, adaphostin-induced ROS production was diminished by >75% in MOLT-4 rho(0) cells, which lack mitochondrial electron transport, relative to parental MOLT-4 cells. In addition, inhibition of oxygen consumption was observed when intact cells were treated with adaphostin. Loading of isolated mitochondria to equivalent adaphostin concentrations caused inhibition of uncoupled oxygen consumption in mitochondria incubated with the complex I substrates pyruvate and malate or the complex II substrate succinate. Further analysis demonstrated that adaphostin had no effect on pyruvate or succinate dehydrogenase activity. Instead, adaphostin inhibited reduced decylubiquinone-induced cytochrome c reduction, identifying complex III as the site of inhibition by this agent. Moreover, adaphostin enhanced the production of ROS by succinate-charged mitochondria. Collectively, these observations demonstrate that mitochondrial respiration rather than direct redox cycling of the hydroquinone moiety is a source of adaphostin-induced ROS and identify complex III as a potential target for antineoplastic agents.  相似文献   
986.
Novel mouse models were developed in which the hepatic selenoprotein population was targeted for removal by disrupting the selenocysteine (Sec) tRNA([Ser]Sec) gene (trsp), and selenoprotein expression was then restored by introducing wild type or mutant trsp transgenes. The selenoprotein population was partially replaced in liver with mutant transgenes encoding mutations at either position 34 (34T-->A) or 37 (37A-->G) in tRNA([Ser]Sec). The A34 transgene product lacked the highly modified 5-methoxycarbonylmethyl-2'-O-methyluridine, and its mutant base A was converted to I34. The G37 transgene product lacked the highly modified N(6)-isopentenyladenosine. Both mutant tRNAs lacked the 2'-methylribose at position 34 (Um34), and both supported expression of housekeeping selenoproteins (e.g. thioredoxin reductase 1) in liver but not stress-related proteins (e.g. glutathione peroxidase 1). Thus, Um34 is responsible for synthesis of a select group of selenoproteins rather than the entire selenoprotein population. The ICA anticodon in the A34 mutant tRNA decoded Cys codons, UGU and UGC, as well as the Sec codon, UGA. However, metabolic labeling of A34 transgenic mice with (75)Se revealed that selenoproteins incorporated the label from the A34 mutant tRNA, whereas other proteins did not. These results suggest that the A34 mutant tRNA did not randomly insert Sec in place of Cys, but specifically targeted selected selenoproteins. High copy numbers of A34 transgene, but not G37 transgene, were not tolerated in the absence of wild type trsp, further suggesting insertion of Sec in place of Cys in selenoproteins.  相似文献   
987.
Deuchar GA  Opie LH  Lecour S 《Life sciences》2007,80(18):1686-1691
Although Tumor Necrosis Factor alpha (TNFα) is used as a preconditioning mimetic in vitro, its role in ischaemic preconditioning (IPC) has not been clearly defined. Here, we propose to use an in vivo model (that takes into account the activation of leukocytes which may affect levels of TNFα) to demonstrate that i) TNFα acts as a trigger in IPC and ii) the dose-dependent nature of this cardioprotective effect of TNFα. Male Wistar rats were subjected to 30 min of left coronary artery occlusion (index ischaemia), followed by 24 h reperfusion. In the presence or absence of a soluble TNFα receptor (sTNFα-R), preconditioning was induced by 3 cycles of ischaemia (3 min)/reperfusion (5 min) (IPC) or various doses (0.05-4 μg/kg) of exogenous TNFα. Following 24 h reperfusion, infarct size (IS, expressed as % of the area at risk (AAR)) was assessed. Tissue levels of TNFα from the AAR, following IPC and TNFα stimulus were determined using Western Blot. IPC caused decrease in IS (4.5 ± 1.3% vs 30.8 ± 4.3% in ischaemic rats; P < 0.001) and increase of TNFα levels following the IPC stimulus. The protective effect of IPC was abrogated in the presence of the sTNFα-R. In addition, exogenous TNFα dose-dependently reduced IS with maximal protection at a dose of 0.1 μg/kg (IS = 12.6%, P < 0.01 vs ischaemic). In conclusion our data provide strong evidence for a role of TNFα during the trigger phase of IPC. In addition, exogenous TNFα mimics IPC by providing a dose-dependent cardioprotective effect against ischaemia-reperfusion injury in vivo.  相似文献   
988.
* The ability of Burkholderia phymatum STM815 to effectively nodulate Mimosa spp., and to fix nitrogen ex planta, was compared with that of the known Mimosa symbiont Cupriavidus taiwanensis LMG19424. * Both strains were equally effective symbionts of M. pudica, but nodules formed by STM815 had greater nitrogenase activity. STM815 was shown to have a broader host range across the genus Mimosa than LMG19424, nodulating 30 out of 31 species, 21 of these effectively. LMG19424 effectively nodulated only nine species. GFP-marked variants were used to visualise symbiont presence within nodules. * STM815 gave significant acetylene reduction assay (ARA) activity in semisolid JMV medium ex planta, but no ARA activity was detected with LMG19424. 16S rDNA sequences of two isolates originally from Mimosa nodules in Papua New Guinea (NGR114 and NGR195A) identified them as Burkholderia phymatum also, with nodA, nodC and nifH genes of NGR195A identical to those of STM815. * B. phymatum is therefore an effective Mimosa symbiont with a broad host range, and is the first reported beta-rhizobial strain to fix nitrogen in free-living culture.  相似文献   
989.
Peripheral blood natural killer (NK) cells from patients with transporter associated with antigen processing (TAP) deficiency are hyporesponsive. The mechanism of this defect is unknown, but the phenotype of TAP-deficient NK cells is almost normal. However, we noticed a high percentage of CD56(bright) cells among total NK cells from two patients. We further investigated TAP-deficient NK cells in these patients and compared them to NK cells from two other TAP-deficient patients with no clinical symptoms and to individuals with chronic inflammatory diseases other than TAP deficiency (chronic lung diseases or vasculitis). Peripheral blood mononuclear cells isolated from venous blood were stained with fluorochrome-conjugated antibodies and the phenotype of NK cells was analyzed by flow cytometry. In addition, (51)Chromium release assays were performed to assess the cytotoxic activity of NK cells. In the symptomatic patients, CD56(bright) NK cells represented 28% and 45%, respectively, of all NK cells (higher than in healthy donors). The patients also displayed a higher percentage of CD56(dim)CD16(-) NK cells than controls. Interestingly, this unusual NK cell subtype distribution was not found in the two asymptomatic TAP-deficient cases, but was instead present in several of the other patients. Over-expression of the inhibitory receptor CD94/NKG2A by TAP-deficient NK cells was confirmed and extended to the inhibitory receptor ILT2 (CD85j). These inhibitory receptors were not involved in regulating the cytotoxicity of TAP-deficient NK cells. We conclude that expansion of the CD56(bright) NK cell subtype in peripheral blood is not a hallmark of TAP deficiency, but can be found in other diseases as well. This might reflect a reaction of the immune system to pathologic conditions. It could be interesting to investigate the relative distribution of NK cell subsets in various respiratory and autoimmune diseases.  相似文献   
990.
A method was developed to characterize the adhesion properties of single cells by using protein‐functionalized atomic force microscopy (AFM) probes. The quantification by force spectroscopy of the mean detachment force between cells and a gelatin‐functionalized colloidal tip reveals differences in cell adhesion properties that are not within reach of a traditional bulk technique, the washing assay. In this latter method, experiments yield semiquantitative and average adhesion properties of a large population of cells. They are also limited to stringent conditions and cannot highlight disparities in adhesion in the subset of adherent cells. In contrast, this AFM‐based method allows for a reproducible and quantitative investigation of the adhesive properties of individual cells in common cell culture conditions and allows for the detection of adhesive subpopulations of cells. These characteristics meet the critical requirements of many fields, such as the study of cancer cell migratory abilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号