首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   17篇
  2022年   5篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   9篇
  2014年   13篇
  2013年   24篇
  2012年   24篇
  2011年   16篇
  2010年   9篇
  2009年   9篇
  2008年   14篇
  2007年   16篇
  2006年   14篇
  2005年   11篇
  2004年   9篇
  2003年   13篇
  2002年   9篇
  2001年   10篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
41.
Magnetotactic bacteria (MTB) comprise a group of motile microorganisms common in most mesothermal aquatic habitats with pH values around neutrality. However, during the last two decades, a number of MTB from extreme environments have been characterized including: cultured alkaliphilic strains belonging to the Deltaproteobacteria class of the Proteobacteria phylum; uncultured moderately thermophilic strains belonging to the Nitrospirae phylum; cultured and uncultured moderately halophilic or strongly halotolerant bacteria affiliated with the Deltaproteobacteria and Gammaproteobacteria classes and an uncultured psychrophilic species belonging to the Alphaproteobacteria class. Here, we used culture‐independent techniques to characterize MTB from an acidic freshwater lagoon in Brazil (pH ~ 4.4). MTB morphotypes found in this acidic lagoon included cocci, rods, spirilla and vibrioid cells. Magnetite (Fe3O4) was the only mineral identified in magnetosomes of these MTB while magnetite magnetosome crystal morphologies within the different MTB cells included cuboctahedral (present in spirilla), elongated prismatic (present in cocci and vibrios) and bullet‐shaped (present in rod‐shaped cells). Intracellular pH measurements using fluorescent dyes showed that the cytoplasmic pH was close to neutral in most MTB cells and acidic in some intracellular granules. Based on 16S rRNA gene phylogenetic analyses, some of the retrieved gene sequences belonged to the genus Herbaspirillum within the Betaproteobacteria class of the Proteobacteria phylum. Fluorescent in situ hybridization using a Herbaspirillum‐specific probe hybridized with vibrioid MTB in magnetically‐enriched samples. Transmission electron microscopy of the Herbaspirillum‐like MTB revealed the presence of many intracellular granules and a single chain of elongated prismatic magnetite magnetosomes. Diverse populations of MTB have not seemed to have been described in detail in an acid environment. In addition, this is the first report of an MTB phylogenetically affiliated with Betaproteobacteria class.  相似文献   
42.
The mitochondrial function in skeletal muscle biopsies of three patients with chronic progressive external ophthalmoplegia, having deletions of the mitochondrial DNA, was studied by laser-excited fluorescence measurements of NAD(P)H and flavoproteins in saponin-skinned fibers. We detected substantially elevated steady state redox states of the mitochondrial NAD-system in the muscle fibers of these patients. Moreover, the respiratory chain-linked autofluorescence changes in the muscle fibers of these patients were larger in comparison to controls indicating substantial alterations of the mitochondrial content. These results are in line with the presence of elevated numbers of partially respiratory chain inhibited mitochondria in the skeletal muscle of chronic progressive external ophthalmoplegia patients. (Mol Cell Biochem 174: 97–100, 1997)  相似文献   
43.
44.
45.
In a previous work, we predicted and demonstrated that the 29-42-residue fragment of beta-amyloid peptide (Abeta peptide) has in vitro capacities close to those of the tilted fragment of viral fusion proteins. We further demonstrated that apolipoprotein E2 and E3 but not apolipoprotein E4 can decrease the fusogenic activity of Abeta(29-42) via a direct interaction. Therefore, we suggested that this fragment is implicated in the neurotoxicity of Abeta and in the protective effects of apolipoprotein E in Alzheimer's disease. Because structurally related apolipoproteins do not interact with the Abeta C-terminal domain but inhibit viral fusion, we suggested that interactions existing between fusogenic peptides and apolipoproteins are selective and responsible for the inhibition of fusion. In this study, we simulated interactions of all amphipathic helices of apolipoproteins E and A-I with Abeta and simian immunodeficiency virus (SIV) fusogenic fragments by molecular modeling. We further calculated cross-interactions that do not inhibit fusion in vitro. The results suggest that interactions of hydrophobic residues are the major event to inhibit the fusogenic capacities of Abeta(29-42) and SIV peptides. Selectivity of those interactions is due to the steric complementarity between bulky hydrophobic residues in the fusogenic fragments and hydrophobic residues in the apolipoprotein C-terminal amphipathic helices.  相似文献   
46.
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N‐glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF–EGFR binding takes place through a large‐scale induced‐fitting mechanism. Proteins 2017; 85:561–570. © 2016 Wiley Periodicals, Inc.  相似文献   
47.
Tilted peptides are short hydrophobic protein fragments characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic interface (such as a lipid membrane) and to destabilize the organized system into which they insert. They were detected in viral fusion proteins and in proteins involved in different biological processes involving membrane insertion or translocation of the protein in which they are found. In this paper, we have analysed different protein domains related to membrane insertion with regard to their tilted properties. They are the N-terminal signal peptide of the filamentous haemagglutinin (FHA), a Bordetella pertussis protein secreted in high amount and the hydrophobic domain from proteins forming pores (i.e. ColIa, Bax and Bcl-2). From the predictions and the experimental approaches, we suggest that tilted peptides found in those proteins could have a more general role in the mechanism of insertion/translocation of proteins into/across membranes. For the signal sequences, they could help the protein machinery involved in protein secretion to be more active. In the case of toroidal pore formation, they could disturb the lipids, facilitating the insertion of the other more hydrophilic helices.  相似文献   
48.
Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.  相似文献   
49.
The Thermomyces lanuginosa lipase has been extensively studied in industrial and biotechnological research because of its potential for triacylglycerol transformation. This protein is known to catalyze both hydrolysis at high water contents and transesterification in quasi-anhydrous conditions. Here, we investigated the Thermomyces lanuginosa lipase structure in solution in the presence of a tributyrin aggregate using 30 ns molecular-dynamics simulations. The water content of the active-site groove was modified between the runs to focus on the protein-water molecule interactions and their implications for protein structure and protein-lipid interactions. The simulations confirmed the high plasticity of the lid fragment and showed that lipid molecules also bind to a secondary pocket beside the lid. Together, these results strongly suggest that the lid plays a role in the anchoring of the protein to the aggregate. The simulations also revealed the existence of a polar channel that connects the active-site groove to the outside solvent. At the inner extremity of this channel, a tyrosine makes hydrogen bonds with residues interacting with the catalytic triad. This system could function as a pipe (polar channel) controlled by a valve (the tyrosine) that could regulate the water content of the active site.  相似文献   
50.
Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.The phylum Porifera (sponges) consists of benthic (sessile) organisms that occur primarily in marine environments at different depths (26). Sponges are classified into three groups, namely, the Calcarea (calcareous sponges), Hexactinellida (glass sponges), and Demospongiae (5, 26). The group Demospongiae, also called demosponges, encompasses 95% of the ca. 5,500 living sponge species described thus far (5). As typical filter feeders, demosponges are the prime bacterial filters of the sea. They are capable of pumping thousands of liters of water per day (23), using prokaryotic microorganisms as the main source of food (1, 43, 47). In addition to demosponges feeding on microorganisms, the presence of bacteria in high density in internal sponge layers (mesohyl) indicates that a selective process favoring particular prokaryotes, involving microbe-sponge interactions, is likely to occur (64). Furthermore, the dawn of the interactions between Prokarya and higher organisms may actually lie in the demosponges, whose origin is estimated to date back to 550 million years ago (5, 33).Putative interactions between demosponges and microorganisms, presumably mostly consisting of Bacteria and Archaea, were first demonstrated by transmission electron microscopy (TEM), where high amounts of microorganisms were observed in the mesohyl (1, 14, 16, 64). Hence, these bacterium-rich sponges have been termed “bacteriosponges” (46). While investigating 11 taxonomically different demosponges using TEM, Vacelet and Donadey (64) identified two different sponge types in respect of their association with bacteria. Sponges with thick mesohyl contained abundant, dense, and morphologically diverse microbial communities (i.e., bacteriosponge), while those with a well-developed aquiferous system and low-density mesohyl contained few bacterial cells and typically only single bacterial morphotypes. The two types have recently been called “high-microbial-abundance” (HMA) and “low-microbial-abundance” (LMA) sponges, respectively (23). In HMA sponges, bacterial densities may reach 108 to 1010 bacterial cells per g (wet weight) of sponge, exceeding seawater concentrations by 2 to 4 orders of magnitude (15, 23). Based on the analysis of 16S rRNA genes, over 15 bacterial phyla have thus far been reported to occur in association with marine sponges (11, 23, 56). Among these are typical sponge-associated bacteria such as members of the Cyanobacteria, Chloroflexi, Proteobacteria, Acidobacteria, Verrucomicrobia, and the candidate phyla “Poribacteria” and TM6 (14, 30, 51, 56, 60, 68).Increasing research interest in the sponge-associated microbiota has emerged in the past few years, mainly due to the in spongium production of an enormous diversity of biologically active secondary metabolites (56). Recent studies suggest that certain bioactive compounds retrieved from marine sponges—such as complex polypeptides and nonribosomal peptides—are likely to be synthesized by the symbiont bacteria (27, 41, 42). Such bioactive secondary metabolites offer great promise for use in biotechnology and medicine (3, 22, 27, 41, 42, 51, 59). In particular, cytotoxic compounds, i.e., antitumoral substances and polyketides, may find application in anticancer therapies (13, 42, 51). Recent investigations revealed the presence of dibromotyrosine-derived metabolites in Aplysina fulva (Pallas, 1766) specimens collected along the Brazilian shore (39). However, a putative role of microbial symbionts in the production of such metabolites, commonly found to display biological activity, remains to be evaluated.Despite the global-scale occurrence of sponges in Earth''s marine ecosystems, the investigation of their associated bacterial communities has thus far been restricted only to certain areas (1, 11, 13, 14, 27, 54, 58, 68). To our knowledge, no studies have been conducted, to date, on sponge-associated microbes in subtropical, South Atlantic open shore waters. In the present study, we assess the diversity and composition of the bacterial community associated with the demosponge A. fulva collected at two different sites at the Brazilian shore. A suite of tools, ranging from plate count estimations and TEM to sponge DNA-based analyses of bacterial 16S rRNA genes, was used. We hypothesized that a distinct bacterial community occurs in A. fulva, which is different from that in the surrounding bulk water, as well as from those in other sponge species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号