首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   57篇
  国内免费   3篇
  2021年   5篇
  2020年   5篇
  2019年   10篇
  2018年   8篇
  2017年   5篇
  2016年   15篇
  2015年   23篇
  2014年   30篇
  2013年   60篇
  2012年   40篇
  2011年   27篇
  2010年   16篇
  2009年   17篇
  2008年   16篇
  2007年   18篇
  2006年   11篇
  2005年   19篇
  2004年   7篇
  2003年   15篇
  2002年   15篇
  2001年   9篇
  2000年   10篇
  1999年   12篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1992年   10篇
  1991年   5篇
  1990年   9篇
  1989年   9篇
  1988年   10篇
  1987年   10篇
  1986年   11篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   9篇
  1979年   16篇
  1978年   3篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
  1974年   8篇
  1973年   4篇
  1972年   5篇
  1967年   4篇
排序方式: 共有594条查询结果,搜索用时 46 毫秒
521.
Nicking of duplex DNA by the iron-mediated Fenton reaction occurs preferentially at a limited number of sequences. Of these, purine-T-G-purine (RTGR) is of particular interest because it is a required element in the upstream regulatory regions of many genes involved in iron and oxidative-stress responses. In order to study the basis of this preferential nicking, NMR studies were undertaken on the RTGR-containing duplex oligonucleotide, d(CGCGATATGACACTAG)/d(CTAGTGTCATATCGCG). One-dimensional and two-dimensional 1H NMR measurements show that Fe(2+) interacts preferentially and reversibly at the ATGA site within the duplex at a rate that is rapid relative to the chemical-shift timescale, while selective paramagnetic NMR line-broadening of the ATGA guanine H8 suggests that Fe(2+) interacts with the guanine N7 moiety. Localization at this site is supported by Fe(2+) titrations of a duplex containing a 7-deazaguanine substitution in place of the guanine in the ATGA sequence. The addition of a 100-fold excess of Mg(2+) over Fe(2+) does not affect the Fe(2+)-dependent broadening. When the ATGA site in the duplex is replaced by ATGT, an RTGR site (GTGA) is created on the opposite strand. Preferential iron localization then takes place at the 3' guanine in GTGA but no longer at the guanine in ATGT, consistent with the lack of preferential cleavage of ATGT sites relative to ATGA sites.  相似文献   
522.
Dehydroaltenusin was found to be an inhibitor of mammalian DNA polymerase alpha (pol alpha) in vitro. Surprisingly, among the polymerases and DNA metabolic enzymes tested, dehydroaltenusin inhibited only mammalian pol alpha. Dehydroaltenusin did not influence the activities of the other replicative DNA polymerases, such as delta and epsilon; it also showed no effect even on the pol alpha activity from another vertebrate (fish) or plant species. The inhibitory effect of dehydroaltenusin on mammalian pol alpha was dose-dependent, and 50% inhibition was observed at a concentration of 0.5 microm. Dehydroaltenusin-induced inhibition of mammalian pol alpha activity was competitive with the template-primer and non-competitive with the dNTP substrate. BIAcore analysis demonstrated that dehydroaltenusin bound to the core domain of the largest subunit, p180, of mouse pol alpha, which has catalytic activity, but did not bind to the smallest subunit or the DNA primase p46 of mouse pol alpha. These results suggest that the dehydroaltenusin molecule competes with the template-primer molecule on its binding site of the catalytic domain of mammalian pol alpha, binds to the site, and simultaneously disturbs dNTP substrate incorporation into the template-primer.  相似文献   
523.
The mechanisms by which Venus's Flytrap (Dionaea muscipula Ellis) close are not clearly understood, and several conflicting models have been proposed. We have measured the dynamics of five trap tissues from three trap regions during full closure of young, fully developed, previously unclosed traps. Closure was divided into three distinct stages: 1) Capture–occurred immediately after stimulation of the trigger hairs and involved the rapid inward flexure of the trap margin and tynes. This motion interlocked the tynes, effectively capturing the prey. This was the only rapid movement of the trap; 2) Appression–completed by 30 min poststimulation, was characterized by contact of the margins; and 3) Sealing–completed by 1 hr poststimulation, was characterized by a sealed “digestive” sac formed around the potential prey, also by tight appression and recurved bending of the trap–margins. Major tissue dynamics that facilitated changes in trap morphology (hence, closure) occurred in different regions of the trap during different periods of time. The first regions where activity occurred were the A and C regions (Fig. 1), after approximately 15 min poststimulation; tissues in the C regions were most active followed by those in the B region of the trap (30 min to 1 hr poststimulation). Thus, shape changes during each stage of closure were the result of temporally separated changes in trap tissue volume. The complete sequence of events was elicited by a single 5–sec period of trigger hair stimulation. Our study showed that changes in the curvature of the trap during closure involved the expansion of opposing tissue groups (i.e., on opposite sides of trap medullary tissues). The pressure from contact of opposing trap lobes during the Appression stage may play an important role in regulating further trap closure and morphology.  相似文献   
524.
525.
526.
Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large‐scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco‐evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular‐scale evolution of genetic architecture.  相似文献   
527.
S. Linné 《Ethnos》2013,78(2-4):118-139
  相似文献   
528.
529.
530.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号