首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15270篇
  免费   1558篇
  国内免费   1539篇
  2024年   36篇
  2023年   217篇
  2022年   553篇
  2021年   880篇
  2020年   636篇
  2019年   811篇
  2018年   789篇
  2017年   575篇
  2016年   778篇
  2015年   987篇
  2014年   1199篇
  2013年   1195篇
  2012年   1382篇
  2011年   1239篇
  2010年   736篇
  2009年   710篇
  2008年   749篇
  2007年   658篇
  2006年   517篇
  2005年   476篇
  2004年   481篇
  2003年   492篇
  2002年   442篇
  2001年   375篇
  2000年   284篇
  1999年   237篇
  1998年   155篇
  1997年   114篇
  1996年   120篇
  1995年   76篇
  1994年   77篇
  1993年   61篇
  1992年   59篇
  1991年   64篇
  1990年   52篇
  1989年   34篇
  1988年   28篇
  1987年   27篇
  1986年   18篇
  1985年   24篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
953.
Prostate-specific membrane antigen (PSMA) is a 100-kDa transmembrane glycoprotein identified by the monoclonal antibody 7E11-C5.3 from the human prostate tumor cell line LNCaP. Because of its significant upregulation in androgen refractory and metastatic prostate cancers, PSMA may be a useful prognostic biomarker and a target for developing novel therapeutic strategies. However, the lack of abundant pure PSMA protein and the low efficacy in immunoaffinity isolation from LNCaP cells have hampered the development of clinical assays. In order to obtain a renewable and reliable source of pure antigen, we used the baculovirus/insect cell system to express and purify a recombinant PSMA. A recombinant baculovirus containing a 6x histidine-tagged PSMA gene was generated, from which rPSMA was expressed and purified using cobalt-chelating affinity chromatography. The purity and correct molecular size of rPSMA were demonstrated by gel electrophoresis and mass spectrometry. Glycosidase digestions showed that the oligosaccharides on rPSMA are primarily N-linked high-mannose type. Although the glycosylation is different from the native PSMA, it did not affect the immunoreactivity of rPSMA to antibodies specific for either the intra- or the extracellular domains of PSMA. Finally, the purified rPSMA was successfully used to develop a quantitative PSMA immunoassay using the novel ProteinChip surface-enhanced laser desorption/ionization mass spectrometry technology.  相似文献   
954.
Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.  相似文献   
955.
Voltage-gated cardiac Na(+) channels are composed of alpha- and beta(1)-subunits. In this study beta(1)-subunit was cotransfected with the alpha-subunit of the human cardiac Na(+) channel (hH1(alpha)) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na(+) currents were assessed. Current density was significantly greater in HEK293t cells coexpressing alpha- and beta(1)-subunits (I(Na,alpha beta)) than in HEK293t cells expressing alpha-subunit alone (I(Na,alpha)). Compared with I(Na,alpha), the voltage-dependent inactivation and activation of I(Na,alpha beta) were significantly shifted in the depolarizing direction. In addition, coexpression with beta(1)-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n-3)] significantly reduced I(Na,alpha beta) in a concentration-dependent manner and at 5 microM shifted the midpoint voltage of the steady-state inactivation by -22 +/- 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n-3)], alpha-linolenic acid [C18:3(n-3)], and conjugated linoleic acid [C18:2(n-6)] at 5 microM significantly inhibited both I(Na,alpha beta) and I(Na,alpha.) In contrast, saturated and monounsaturated fatty acids had no effects on I(Na,alpha beta). This finding differs from the results for I(Na,alpha), which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of beta(1)-subunit with hH1(alpha) modifies the kinetics and fatty acid block of the Na(+) channel.  相似文献   
956.
957.
Chamankhah M  Fontanie T  Xiao W 《Genetics》2000,155(2):569-576
The yeast Mre11 protein participates in important cellular functions such as DNA repair and telomere maintenance. Analysis of structure-function relationships of Mre11 has led to identification of several separation-of-function mutations as well as N- and C-terminal domains essential for Mre11 meiotic and mitotic activities. Previous studies have established that there is a strong correlation between Mre11 DNA repair and telomere maintenance functions and that Mre11-Rad50-Xrs2 complex formation appears to be essential for both of these activities. Here we report that the mre11(ts) allele, previously shown to cause temperature-dependent defects in DNA repair and meiosis, confers a temperature-independent telomere shortening, indicating that mre11(ts) is a separation-of-function mutation with respect to DNA repair and telomere maintenance. In a yeast two-hybrid system, Mre11(ts) fails to form a homodimer or interact with Rad50 and Xrs2 irrespective of experimental temperatures. These observations collectively suggest that the Pro(162)Ser substitution in Mre11(ts) confers a novel separation of Mre11 mitotic functions. Moreover, we observed that while overexpression of the 5'-3' exonuclease gene EXO1 partially complements the MMS sensitivity of mre11, rad50, and xrs2 null mutants, it has no effect on telomere shortening in these strains. This result provides additional evidence on possible involvement of distinctive mechanisms in DNA repair and telomere maintenance by the Mre11-Rad50-Xrs2 complex.  相似文献   
958.
Gravity independence of seed-to-seed cycling in Brassica rapa   总被引:2,自引:0,他引:2  
 Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity. Received: 3 August 1999 / Accepted: 27 August 1999  相似文献   
959.
Parikh SL  Xiao G  Tonge PJ 《Biochemistry》2000,39(26):7645-7650
Structural and genetic studies indicate that the antibacterial compound triclosan, an additive in many personal care products, is an inhibitor of EnvM, the enoyl reductase from Escherichia coli. Here we show that triclosan specifically inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis and a target for the antitubercular drug isoniazid. Binding of triclosan to wild-type InhA is uncompetitive with respect to both NADH and trans-2-dodecenoyl-CoA, with K(i)' values of 0.22+/-0.02 and 0.21+/-0.01 microM, respectively. Replacement of Y158, the catalytic tyrosine residue, with Phe, reduces the affinity of triclosan for the enzyme and results in noncompetitive inhibition, with K(i) and K(i)' values of 36+/-5 and 47+/-5 microM, respectively. Consequently, the Y158 hydroxyl group is important for triclosan binding, suggesting that triclosan binds in similar ways to both InhA and EnvM. In addition, the M161V and A124V InhA mutants, which result in resistance of Mycobacterium smegmatis to triclosan, show significantly reduced affinity for triclosan. Inhibition of M161V is noncompetitive with K(i)' = 4.3+/-0.5 microM and K(i) = 4.4+/-0.9 microM, while inhibition of A124V is uncompetitive with K(i)' = 0. 81 +/- 0.11 microM. These data support the hypothesis that the mycobacterial enoyl reductases are targets for triclosan. The M161V and A124V enzymes are also much less sensitive to isoniazid compared to the wild-type enzyme, indicating that triclosan can stimulate the emergence of isoniazid-resistant enoyl reductases. In contrast, I47T and I21V, two InhA mutations that occur in isoniazid-resistant clinical isolates of M. tuberculosis, show unimpaired inhibition by triclosan, with uncompetitive inhibition constants (K(i)') of 0.18+/-0.01 and 0.12+/- 0.01 microM, respectively. The latter result indicates that InhA inhibitors targeted at the enoyl substrate binding site may be effective against existing isoniazid-resistant strains of M. tuberculosis.  相似文献   
960.
RON is a receptor tyrosine kinase that mediates cell scattering, migration, and tubular formation. This study focused on the function of two tyrosines, Y1330 and Y1337, in the C-terminus of RON in regulating epithelial cell scattering and migration. Substitution of both tyrosine residues with phenylalanine causes complete loss of cell scattering and migration in kidney 293 cells. In contrast, single mutation of either tyrosine residue has no effect. We found that mutation at Y1330 or Y1337 alone does not significantly affect the association of RON with PI-3 kinase, whereas a double mutation abolishes the recruitment of substrates. RON-mediated cell migration was inhibited by PI-3 kinase inhibitor wortmannin. This effect was also achieved by a dominant inhibitory p85 of PI-3 kinase. We conclude that Y1330 and Y1337 are required for RON-mediated cell motility. By associating with PI-3 kinase, the Y1330-Y1337 docking site plays a critical role in transducing motile signals of RON.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号