首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   685篇
  免费   75篇
  国内免费   2篇
  2023年   5篇
  2021年   15篇
  2020年   11篇
  2019年   9篇
  2018年   9篇
  2017年   8篇
  2016年   12篇
  2015年   26篇
  2014年   28篇
  2013年   22篇
  2012年   40篇
  2011年   41篇
  2010年   26篇
  2009年   15篇
  2008年   23篇
  2007年   42篇
  2006年   41篇
  2005年   37篇
  2004年   36篇
  2003年   31篇
  2002年   28篇
  2001年   30篇
  2000年   26篇
  1999年   19篇
  1998年   8篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1992年   13篇
  1991年   19篇
  1990年   11篇
  1989年   5篇
  1988年   13篇
  1987年   11篇
  1986年   6篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1982年   3篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1967年   2篇
  1964年   2篇
排序方式: 共有762条查询结果,搜索用时 15 毫秒
111.
Phosphoinositide-3-kinase (PI3K) is an important target for cancer therapeutics due to the deregulation of this signaling pathway in a wide variety of human cancers. Herein, we describe the optimization of imidazo [1,2-a] pyrazines, which allow us to identify compound 14 (ETP-46321), with potent biochemical and cellular activity and good pharmacokinetic properties (PK) after oral dosing. ETP-46321 PK/PD studies showed time dependent downregulation of AKT(Ser473) phosphorylation, which correlates with compound levels in tumor tissue and demonstrating to be efficacious in a GEMM mouse tumor model driven by a K-Ras(G12V) oncogenic mutation. Treatment with ETP-46321 resulted in significant tumor growth inhibition.  相似文献   
112.
Phosphoinositide-3-kinases (PI3K) are a family of lipid kinases mediating numerous cell processes such as proliferation, migration and differentiation. PI3K is an important target for cancer therapeutics due to the deregulation of this signaling pathway in a wide variety of human cancers. Herein, we describe the rapid identification of ETP-46992, within 2-aminocarbonyl imidazo [1,2-a] pyrazine series, with suitable pharmacokinetic (PK) properties that allows the establishment of mechanism of action and efficacy in vivo studies. ETP-46992 showed tumor growth inhibition in a GEMM mouse tumor model driven by a K-Ras(G12V) oncogenic mutation and in tumor xenograft models with PI3K pathway deregulated (BT474).  相似文献   
113.
Multiple sclerosis (MS) is a complex disease of the central nervous system of unknown etiology. The human leukocyte antigen (HLA) locus on chromosome 6 confers a considerable part of the susceptibility to MS, and the most important factor is the class II allele HLA-DRB1*15:01. In addition, we and others have previously established a protective effect of HLA-A*02. Here, we genotyped 1,784 patients and 1,660 healthy controls from Scandinavia for the HLA-A, HLA-B, HLA-C and HLA-DRB1 genes and investigated their effects on MS risk by logistic regression. Several allele groups were found to exert effects independently of DRB1*15 and A*02, in particular DRB1*01 (OR = 0.82, p = 0.034) and B*12 (including B*44/45, OR = 0.76, p = 0.0028), confirming previous reports. Furthermore, we observed interaction between allele groups: DRB1*15 and DRB1*01 (multiplicative: OR = 0.54, p = 0.0041; additive: AP = 0.47, p = 4 × 10(-06)), DRB1*15 and C*12 (multiplicative: OR = 0.37, p = 0.00035; additive: AP = 0.58, p = 2.6 × 10(-05)), indicating that the effect size of these allele groups varies when taking DRB1*15 into account. Analysis of inferred haplotypes showed that almost all DRB1*15 bearing haplotypes were risk haplotypes, and that all A*02 bearing haplotypes were protective as long as they did not carry DRB1*15. In contrast, we found one class I haplotype, carrying A*02-C*05-B*12, which abolished the risk of DRB1*15. In conclusion, these results confirms a complex role of HLA class I and II genes that goes beyond DRB1*15 and A*02, in particular by including all three classical HLA class I genes as well as functional interactions between DRB1*15 and several alleles of DRB1 and class I genes.  相似文献   
114.
Spastin and katanin are ring-shaped hexameric AAA ATPases that sever microtubules, and thus crucially depend on a physical interaction with microtubules. For the first time, we report here the microtubule binding properties of spastin at the single-molecule level, and compare them to katanin. Microscopic fluorescence assays showed that human spastin bound to microtubules by ionic interactions, and diffused along microtubules with a diffusion coefficient comparable to katanin. The microscopic measurement of landing and dissociation rates demonstrated the ionic character of the interaction, which could be mapped to a patch of three lysine residues outside of the catalytic domain of human spastin. This motif is not conserved in Drosophila spastin or katanin, which also bound by non-catalytic parts of the protein. The binding affinities of spastin and katanin were nucleotide-sensitive, with the lowest affinities under ADP,, the highest under ATP-γS conditions. These changes correlated with the formation of higher oligomeric states, as shown in biochemical experiments and electron microscopic images. Vice versa, the artificial dimerization of human spastin by addition of a coiled coil led to a constitutively active enzyme. These observations suggest that dimer formation is a crucial step in the formation of the active complex, and thus the severing process by spastin.  相似文献   
115.
Phenotypic plasticity of two primitive wheat species (Triticum monococcum L. and Triticum dicoccum S.) was studied in response to early chilling stress. Selection pressure differentials, gradients and plasticity costs on plant morphogenesis, growth and reserve carbohydrate consumption were estimated. Regression analysis was applied to investigate differential developmental changes and patterns between treatments. Four‐day‐old seedlings of T. monococcum and T. dicoccum, differing in plant stature and reserve carbohydrates, were given an early chilling temperature (4 °C for 42 day) and compared with control plants grown at 23 °C. Early chilling stress resulted in a significant increase in leaf mass ratio (LMR) and relative growth rate (RGR), a reduction in flag leaf size, total biomass, specific leaf area (SLA) and reserve carbohydrate storage at flowering, together with advanced onset of flowering. Selection pressure within the early chilling environment favoured early flowering, smaller SLA, higher LMR and lower reserve carbohydrates, suggesting the observed responses were adaptive. Furthermore, a regression of daily cumulative plant biomass derived from a crop growth simulation model (CERES‐Wheat) on crop vegetation period revealed a divergent developmental pattern in early‐chilled plants. Using selection pressure gradient analysis, we found similar responses among these traits, except for SLA and sucrose, indicating that these two traits have indirect effects on fitness. Thus, the total effects of SLA and reserve sucrose on relative fitness seem to be buffered via the rapid growth rate in chilled plants. While lower SLA may reduce early chilling stress effects at an individual leaf level, a higher LMR and use of reserve carbohydrates indicated that compensatory growth of chilled plants during the recovery period relied on the concerted action of altered resource allocation and reserve carbohydrate consumption. However, a significant cost of plasticity was evident only for flowering time, LMR and fructan levels in the early chilling environment. Our results demonstrate that morphological and intrinsic developmental (ontogenetic) patterns in two Triticum species respond to early chilling stress.  相似文献   
116.
Breeding of oilseed rape (Brassica napus ssp. napus) has evoked a strong bottleneck selection towards double-low (00) seed quality with zero erucic acid and low seed glucosinolate content. The resulting reduction of genetic variability in elite 00-quality oilseed rape is particularly relevant with regard to the development of genetically diverse heterotic pools for hybrid breeding. In contrast, B. napus genotypes containing high levels of erucic acid and seed glucosinolates (++ quality) represent a comparatively genetically divergent source of germplasm. Seed glucosinolate content is a complex quantitative trait, however, meaning that the introgression of novel germplasm from this gene pool requires recurrent backcrossing to avoid linkage drag for high glucosinolate content. Molecular markers for key low-glucosinolate alleles could potentially improve the selection process. The aim of this study was to identify potentially gene-linked markers for important seed glucosinolate loci via structure-based allele-trait association studies in genetically diverse B. napus genotypes. The analyses included a set of new simple-sequence repeat (SSR) markers whose orthologs in Arabidopsis thaliana are physically closely linked to promising candidate genes for glucosinolate biosynthesis. We found evidence that four genes involved in the biosynthesis of indole, aliphatic and aromatic glucosinolates might be associated with known quantitative trait loci for total seed glucosinolate content in B. napus. Markers linked to homoeologous loci of these genes in the paleopolyploid B. napus genome were found to be associated with a significant effect on the seed glucosinolate content. This example shows the potential of Arabidopsis-Brassica comparative genome analysis for synteny-based identification of gene-linked SSR markers that can potentially be used in marker-assisted selection for an important trait in oilseed rape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
117.
The conversion of 1-deoxy-D-xylulose-5-phosphate (DOXP) to 2-C-methyl-D-erythritol-4-phosphate (MEP) is effectively blocked by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitors such as the natural antibiotic fosmidomycin. Prediction of binding affinities for closely related Dxr ligands as well as estimation of the affinities of structurally more distinct inhibitors within this class of non-hydrolyzable phosphate mimics relies on the synthesis of fosmidomycin derivatives with a broad range of target affinity. Maintaining the phosphonic acid moiety, linear modifications of the lead structure were carried out in an effort to expand the SAR of this physicochemically challenging class of compounds. Synthetic access to a set of phosphonic acids with inhibitory activity (IC(50)) in the range from 1 to >30 microM vs. E. coli Dxr and 0.4 to 20 microM against P. falciparum Dxr is reported.  相似文献   
118.

Background

Inhibition of Akt signaling is considered one of the most promising therapeutic strategies for many cancers. However, rational target-orientated approaches to cell based drug screens for anti-cancer agents have historically been compromised by the notorious absence of suitable control cells.

Methodology/Principal Findings

In order to address this fundamental problem, we have developed BaFiso, a live-cell screening platform to identify specific inhibitors of this pathway. BaFiso relies on the co-culture of isogenic cell lines that have been engineered to sustain interleukin-3 independent survival of the parental Ba/F3 cells, and that are individually tagged with different fluorescent proteins. Whilst in the first of these two lines cell survival in the absence of IL-3 is dependent on the expression of activated Akt, the cells expressing constitutively-activated Stat5 signaling display IL-3 independent growth and survival in an Akt-independent manner. Small molecules can then be screened in these lines to identify inhibitors that rescue IL-3 dependence.

Conclusions/Significance

BaFiso measures differential cell survival using multiparametric live cell imaging and permits selective inhibitors of Akt signaling to be identified. BaFiso is a platform technology suitable for the identification of small molecule inhibitors of IL-3 mediated survival signaling.  相似文献   
119.
120.
The phenological behavior of many tropical plant species is highly dependent on rainfall, but these plants may also respond to changes in photoperiod. Without a better knowledge of the proportion of species responding to different factors, it is difficult to predict how global climate change may affect natural ecosystem processes. The aim of this study was to describe flowering patterns for more than 100 species in Tinigua Park, Colombia, and to propose which factors may trigger flower production ( e.g. , rainfall, temperature, cloud cover, and photoperiod). Data gathered in 5.6 km of phenological transects during 4 yr and complementary information indicated that the vast majority of species showed intraspecific synchronization, and annual production was the most common pattern, followed by episodic frequency. The annual patterns were common in tree species, while episodic patterns were common in lianas. Simple and multiple regression analyses suggested several aspects of photoperiod as the most likely triggers for flowering in most species. However, the fact that many of these species produce flowers in different periods each year, suggests that the proportion of species responding to photoperiodic cues is less that 23 percent in this community. The flowering times of taxonomically related species seldom showed significantly staggered distributions; however they do not necessarily occur at the same time, suggesting that flowering patterns are not strongly constrained by phylogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号