首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4704篇
  免费   312篇
  国内免费   305篇
  5321篇
  2024年   6篇
  2023年   68篇
  2022年   160篇
  2021年   240篇
  2020年   153篇
  2019年   184篇
  2018年   186篇
  2017年   140篇
  2016年   201篇
  2015年   260篇
  2014年   338篇
  2013年   369篇
  2012年   412篇
  2011年   347篇
  2010年   228篇
  2009年   211篇
  2008年   232篇
  2007年   166篇
  2006年   161篇
  2005年   159篇
  2004年   155篇
  2003年   146篇
  2002年   104篇
  2001年   118篇
  2000年   83篇
  1999年   95篇
  1998年   46篇
  1997年   33篇
  1996年   36篇
  1995年   34篇
  1994年   30篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   31篇
  1989年   8篇
  1988年   17篇
  1987年   12篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
排序方式: 共有5321条查询结果,搜索用时 15 毫秒
91.
Ribosomal protein L34 (RPL34), belonging to the L34E family of ribosomal proteins, was reported to be dysregulated in several types of cancers and plays important roles in tumor progression. However, the expression and roles of RPL34 in human glioma remain largely unknown. Thus, the objective of this study was to investigate the expression and role of RPL34 in glioma. We report here that RPL34 is highly expressed in human glioma tissues and cell lines. Knockdown of RPL34 markedly inhibited the proliferation, migration, and invasion, as well as prevented the epithelial-mesenchymal transition phenotype in glioma cells. Further, mechanistic analysis showed that knockdown of RPL34 significantly downregulated the levels of p-JAK and p-STAT3 in glioma cells. Taken together, our findings indicated that knockdown of RPL34 inhibits the proliferation and migration of glioma cells through the inactivation of JAK/STAT3 signaling pathway. Thus, RPL34 may serve as a potential therapeutic target for the treatment of glioma.  相似文献   
92.
At the 16-cell stage, the sea urchin embryo is partitioned along the animal-vegetal axis into eight mesomeres, four macromeres, and four micromeres. The micromeres, unlike the other blastomeres, are autonomously specified to produce skeletogenic mesenchymal cells and are also required to induce the vegetal-plate territory. A long-held belief is that micromeres inherit localized maternal determinants that endow them with their cell autonomous behavior and inducing capabilities. Here, we present evidence that an orthodenticle-related protein, SpOtx appears transiently in nuclei of micromeres but not in nuclei of mesomeres and macromeres. At later stages of development, SpOtx was translocated into nuclei of all cells. To address the possibility that SpOtx was retained In the cytoplasm at early developmental stages we searched for cytoplasmic proteins that interact with SpOtx. A proline-rich region of SpOtx resembling an SH3-binding domain was used to screen an embryo cDNA expression library, and a cDNA clone was isolated and shown to be α-actinin. A yeast two-hybrid analysis showed a specific interaction between the proline-rich region of SpOtx and a putative SH3 domain of the sea urchin α-actinin. Because micromeres lack an actin-based cytoskeleton, the results suggested that, at the vegetal pole of the 16-cell stage embryo, SpOtx was translocated into micromere nuclei, whereas in other blastomeres SpOtx was actively retained in the cytoplasm by binding to α-actinin. The transient appearance of SpOtx in micromere nuclei may be associated with the specification of micromere cell fate. © 1996 Wiley-Liss, Inc.  相似文献   
93.
Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.  相似文献   
94.
95.
96.
97.
N 6-Threonylcarbamoyladenosine (t6A) is a universal and pivotal tRNA modification. KEOPS in eukaryotes participates in its biogenesis, whose mutations are connected with Galloway-Mowat syndrome. However, the tRNA substrate selection mechanism by KEOPS and t6A modification function in mammalian cells remain unclear. Here, we confirmed that all ANN-decoding human cytoplasmic tRNAs harbor a t6A moiety. Using t6A modification systems from various eukaryotes, we proposed the possible coevolution of position 33 of initiator tRNAMet and modification enzymes. The role of the universal CCA end in t6A biogenesis varied among species. However, all KEOPSs critically depended on C32 and two base pairs in the D-stem. Knockdown of the catalytic subunit OSGEP in HEK293T cells had no effect on the steady-state abundance of cytoplasmic tRNAs but selectively inhibited tRNAIle aminoacylation. Combined with in vitro aminoacylation assays, we revealed that t6A functions as a tRNAIle isoacceptor-specific positive determinant for human cytoplasmic isoleucyl-tRNA synthetase (IARS1). t6A deficiency had divergent effects on decoding efficiency at ANN codons and promoted +1 frameshifting. Altogether, our results shed light on the tRNA recognition mechanism, revealing both commonality and diversity in substrate recognition by eukaryotic KEOPSs, and elucidated the critical role of t6A in tRNAIle aminoacylation and codon decoding in human cells.  相似文献   
98.
To investigate the genetic factors underlying constitutive and adaptive morphological traits of roots under different water-supply conditions, a recombinant inbred line (RIL) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 249 molecular markers, was used in cylindrical-pot experiments. Eighteen QTLs were detected for seminal root length (SRL), adventitious root number (ARN), and lateral root length (LRL) and lateral root number (LRN) on the seminal root at a soil depth of from 3 to 6 cm under flooding and upland conditions. One identical QTL was detected under both flooding and upland conditions. The relative parameters under the two water-supply conditions were also used for QTL analysis. Five QTLs for upland induced variations in the traits were detected with the positive alleles from Azucena. A comparative analysis was performed for the QTLs detected in this study and those reported from two other populations with Azucena as a parent. Several identical QTLs for root elongation were found across the three populations with positive alleles from Azucena. Candidate genes were screened from ESTs and cDNA-AFLP clones for comparative mapping with the detected QTLs. Two genes for cell expansion, OsEXP2 and endo-1,4--D-glucanase EGase, and four cDNA-AFLP clones from root tissues of Azucena, were mapped on the intervals carrying the QTLs for SRL and LRL under upland conditions, respectively.Communicated by H.C. Becker  相似文献   
99.
Intracellular delivery of glutathione S-transferase into mammalian cells   总被引:4,自引:0,他引:4  
Protein transduction domains (PTDs) derived from human immunodeficiency virus Tat protein and herpes simplex virus VP22 protein are useful for the delivery of non-membrane-permeating polar or large molecules into living cells. In the course of our study aiming at evaluating PTD, we unexpectedly found that the fluorescent-dye-labeled glutathione S-transferase (GST) from Schistosoma japonicum without known PTDs was delivered into COS7 cells. The intracellular transduction of GST was also observed in HeLa, NIH3T3, and PC12 cells, as well as in hippocampal primary neurons, indicating that a wide range of cell types is permissive for GST transduction. Furthermore, we showed that the immunosuppressive peptide VIVIT fused with GST successfully inhibits NFAT activation. These results suggest that GST is a novel PTD which may be useful in the intracellular delivery of biologically active molecules, such as small-molecule drugs, bioactive peptides, or proteins.  相似文献   
100.
通过动脉内灌药,内支架安置双介入治疗提高对十二指肠恶性梗阻姑息性治疗的疗效。十二指肠恶性梗阻病例14例,男5例,女9例,年龄20-69岁,经口安置自膨式十二指肠金属支架共15枚,其中12例在支架安置后定期行肿瘤供血动脉插管介入化疗,所有病例梗阻症状解除,2例未行动脉灌药治疗者分别于2个月及4个月死亡,12例双介入者生存期明显延长,最短6月,最长已达一年,结论:双介入治疗能够姑息治疗疗效延长晚期瘤患  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号