首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19254篇
  免费   1404篇
  国内免费   1277篇
  21935篇
  2024年   42篇
  2023年   263篇
  2022年   553篇
  2021年   942篇
  2020年   574篇
  2019年   823篇
  2018年   816篇
  2017年   574篇
  2016年   844篇
  2015年   1124篇
  2014年   1369篇
  2013年   1457篇
  2012年   1713篇
  2011年   1545篇
  2010年   983篇
  2009年   947篇
  2008年   1057篇
  2007年   989篇
  2006年   812篇
  2005年   701篇
  2004年   536篇
  2003年   527篇
  2002年   441篇
  2001年   343篇
  2000年   299篇
  1999年   291篇
  1998年   166篇
  1997年   159篇
  1996年   159篇
  1995年   119篇
  1994年   87篇
  1993年   71篇
  1992年   112篇
  1991年   82篇
  1990年   68篇
  1989年   54篇
  1988年   45篇
  1987年   43篇
  1986年   38篇
  1985年   51篇
  1984年   8篇
  1983年   17篇
  1982年   9篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   5篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Human bone marrow-derived mesenchymal stem cells (hBMMSCs) must differentiate into osteogenic cells to allow for successful bone regeneration. In this study, we investigated the effects of different combinations of three soluble osteogenic differentiation-inducing factors [L-ascorbic acid (AC), beta-glycerophosphate (betaG), and bone morphogenic protein-2 (BMP-2)] and the presence of a hydroxyapatite (HA) substrate on hBMMSC osteogenic differentiation in vitro. hBMMSCs were cultured in medium containing various combinations of the soluble factors on culture plates with or without HA coating. After 7 days of culture, alkaline phosphatase (ALP) activity, calcium deposition, and osteoprotegerin (OPG) and osteopontin (OPN) expression were measured. The effects of individual and combined factors were evaluated using a factorial analysis method. BMP-2 predominantly affected expression of early markers of osteogenic differentiation (ALP and OPG). HA had the highest positive effect on OPN expression and calcium deposition. The interaction between AC, betaG, and HA had the second highest positive effect on ALP activity.  相似文献   
932.
应用ISSR分子标记技术对本溪草河口林场的红松(Pinus koraiensis)人工林两个种群的60个个体进行遗传多样性分析。14个ISSR引物共检测到90个位点,其中多态位点65个,多态位点比率0.722 2。Nei指数统计结果表明,红松人工林的遗传多样性喜鹊沟种群(0.278 9)大于烈士墓种群(0.271 2),Shannon指数统计结果与Nei指数相同。研究证实草河口林场红松人工林保存了较多的遗传多样性。  相似文献   
933.
Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.  相似文献   
934.
935.
The 97-kDa valosin-containing protein (p97-VCP) plays a role in a wide variety of cellular activities, many of which are regulated by the ubiquitin-proteasome (Ub-Pr)-mediated degradation pathway. We previously demonstrated that VCP binds to multi-ubiquitin chains and may act as a molecular chaperone that targets the ubiquitinated substrates to the proteasome for degradation. In this report, we show that although the ubiquitin chain-binding activity, carried out by the N-terminal 200 residues (N domain), is necessary for the degradation of proteasome substrates, it is not sufficient. Using in vitro degradation assays, we demonstrated that the entire VCP molecule, consisting of the N domain and two ATPase domains D1 and D2, is required for mediating the Ub-Pr degradation. The ATPase activity of VCP requires Mg(2+), and is stimulated by high temperature. Under optimal conditions, VCP hydrolyzes ATP with a K(m) of approximately 0.33 mm and a V(max) of approximately 0.52 nmol P(i) min(-1) microg(-1). At a physiological temperature, mutation in D2 significantly inhibits the ATPase activity, while that in D1 has little effect. Interestingly, mutations in D1, but not D2, abolish the heat-stimulated ATPase activity. Thus, we provide the first demonstration that the ATPase activity of VCP is required for mediating the Ub-Pr degradation, that D2 accounts for the major ATPase activity, and that D1 contributes to the heat-induced activity.  相似文献   
936.
Complete Genome Sequence of Staphylococcus aureus Bacteriophage GH15   总被引:1,自引:0,他引:1  
J Gu  X Liu  R Lu  Y Li  J Song  L Lei  C Sun  X Feng  C Du  H Yu  Y Yang  W Han 《Journal of virology》2012,86(16):8914-8915
GH15 is a polyvalent phage that shows activity against a wide range of Staphylococcus aureus strains. In this work, the complete genome sequence of GH15 was determined. With a genome size of 139,806 bp (double-stranded DNA), GH15 is the largest staphylococcal phage sequenced to date. The complete genome encodes 214 open reading frames (ORFs) and 4 tRNAs. The closest relatives are the class III staphylococcal myobacteriophages, including K, A5W, ISP, Sb-1, and G1. Interestingly, although corresponding gene sequences demonstrate very high similarity, all the introns and inteins present in the phages listed above are absent in GH15. As such, GH15 can be considered phylogenetically unique among the staphylococcal myobacteriophages, indicating the diversity of this family.  相似文献   
937.
In this study, we created porcine‐induced pluripotent stem (iPS) cells with the expression of six reprogramming factors (Oct3/4, Klf4, Sox2, c‐Myc, Lin28, and Nanog). The resulting cells showed growth dependent on LIF (leukemia inhibitory factor) and expression of multiple stem cell markers. Furthermore, the iPS cells caused teratoma formation with three layers of differentiation and had both active X chromosomes (XaXa). Our iPS cells satisfied the both of important characteristics of stem cells: teratoma formation and activation of both X chromosomes. Injection of these iPS cells into morula stage embryos showed that these cells participate in the early stage of porcine embryogenesis. Furthermore, the RNA‐Seq analysis detected that expression levels of endogenous pluripotent related genes, NANOG, SOX2, ZFP42, OCT3/4, ESRRB, and ERAS were much higher in iPS with six factors than that with four reprogramming factors. We can conclude that the expression of six reprogramming factors enables the creation of porcine iPS cells, which is partially close to naive iPS state. J. Cell. Biochem. 118: 537–553, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   
938.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   
939.
Time‐resolved fluorometry of lanthanide chelates is one of the most useful non‐isotopic detection techniques and has been used in numerous applications in biomedical science. We developed a time‐resolved fluoroimmunoassay (TRFIA) to quantify α‐fetoprotein (AFP) and hepatitis B virus surface antigen (HBsAg) in human serum. Based on a two‐site sandwich protocol, monoclonal antibodies (McAbs) against AFP and HBsAg were co‐coated in 96 microtitration wells and tracer McAbs against HBsAg and AFP were labeled with europium (Eu) and samarium (Sm) chelates, respectively. After application of diluted serum samples, Eu3+‐ and Sm3+‐McAbs were added and fluorescence signals of Sm3+ and Eu3+ tracers were collected. Detection limits of AFP and HBsAg were 0.09 mIU/L and 0.01 µg/L, respectively. Measurement ranges of AFP‐TRFIA and HBsAg‐TRFIA were 1–1000 mIU/L and 0.2‐150 µg/L, respectively. Intra‐ and inter‐assay coefficients of variation of AFP‐TRFIA were 3.3‐4.1% and 5.7‐7.2% and for HBsAg‐TRFIA were 2.9‐3.9% and 4.9‐6.8%, respectively. Linear correlation of TRFIA and chemiluminescence immunoassay measurements resulted in a correlation coefficient of 0.9949 for AFP and 0.9940 for HBsAg. For the endurance test, Eu‐labeled McAbs were stable for at least one year at ?20°C and the results of the TRFIA with the same reagents were also reproducible after one year. The availability of a highly sensitive, reliable and convenient AFP/HBsAg TRFIA will allow the quantification of both AFP and HBsAg, thereby providing diagnostic value in various clinical conditions and could be applied for clinical use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
940.
Zhang P  Haryadi R  Chan KF  Teo G  Goh J  Pereira NA  Feng H  Song Z 《Glycobiology》2012,22(7):897-911
The GDP-fucose transporter SLC35C1 critically regulates the fucosylation of glycans. Elucidation of its structure-function relationships remains a challenge due to the lack of an appropriate mutant cell line. Here we report a novel Chinese hamster ovary (CHO) mutant, CHO-gmt5, generated by the zinc-finger nuclease technology, in which the Slc35c1 gene was knocked out from a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter (CST) gene (Slc35a1). Consequently, CHO-gmt5 harbors double genetic defects in Slc35a1 and Slc35c1 and produces N-glycans deficient in both sialic acid and fucose. The structure-function relationships of SLC35C1 were studied using CHO-gmt5 cells. In contrast to the CST and UDP-galactose transporter, the C-terminal tail of SLC35C1 is not required for its Golgi localization but is essential for generating glycans that are recognized by a fucose-binding lectin, Aleuria aurantia lectin (AAL), suggesting an important role in the transport activity of SLC35C1. Furthermore, we found that this impact can be independently contributed by a cluster of three lysine residues and a Glu-Met (EM) sequence within the C terminus. We also showed that the conserved glycine residues at positions 180 and 277 of SLC35C1 have significant impacts on AAL binding to CHO-gmt5 cells, suggesting that these conserved glycine residues are required for the transport activity of Slc35 proteins. The absence of sialic acid and fucose on Fc N-glycan has been independently shown to enhance the antibody-dependent cellular cytotoxicity (ADCC) effect. By combining these features into one cell line, we postulate that CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号