首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4761篇
  免费   308篇
  国内免费   293篇
  2024年   6篇
  2023年   53篇
  2022年   126篇
  2021年   271篇
  2020年   192篇
  2019年   208篇
  2018年   161篇
  2017年   134篇
  2016年   215篇
  2015年   313篇
  2014年   336篇
  2013年   358篇
  2012年   492篇
  2011年   399篇
  2010年   231篇
  2009年   226篇
  2008年   234篇
  2007年   189篇
  2006年   174篇
  2005年   136篇
  2004年   110篇
  2003年   98篇
  2002年   103篇
  2001年   84篇
  2000年   75篇
  1999年   69篇
  1998年   42篇
  1997年   40篇
  1996年   35篇
  1995年   42篇
  1994年   39篇
  1993年   24篇
  1992年   30篇
  1991年   33篇
  1990年   17篇
  1989年   16篇
  1988年   12篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1965年   1篇
排序方式: 共有5362条查询结果,搜索用时 594 毫秒
201.
The MgO–Ga2O3–SiO2 glasses and glass‐ceramics samples doped with Eu2+/Mn2+/Er3+ and heated in reductive atmosphere were prepared by the sol–gel method. The structure, morphology and the luminescence properties were studied using X‐ray diffraction, high‐resolution transmission electron microscope, fluorescence spectra, and up‐conversion emission. The luminescence characteristics of doped ions could be influenced by temperature and matrix component. The characteristic emission of Mn2+, Eu2+ and Er3+ were seen and the energy transfer efficiency from Eu2+ to Mn2+ was enhanced as Mn2+ concentration was increased. In addition, the two‐photon process was determined for the Er3+‐doped samples.  相似文献   
202.
Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.  相似文献   
203.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   
204.
Zhao  Jianlin  Peng  Wei  Ran  Yuxin  Ge  Huisheng  Zhang  Chen  Zou  Hong  Ding  Yubin  Qi  Hongbo 《Journal of physiology and biochemistry》2019,75(4):475-487
Journal of Physiology and Biochemistry - Preeclampsia (PE) is a hypertensive disease associated with increased endothelial cell dysfunction caused by systemic oxidative stress. Alpha-actinin-4...  相似文献   
205.
206.
Meiosis is essential for eukaryotic sexual reproduction and plant fertility, and crossovers (COs) are essential for meiosis and the formation of new allelic combinations in gametes. In this study, we report the isolation of a meiotic gene, OsSHOC1, and the identification of its partner, OsPTD1. Osshoc1 was sterile both in male and female gametophytes, and it showed a striking reduction in the number of meiotic COs, indicating that OsSHOC1 was required for normal CO formation. Further investigations showed that OsSHOC1 physically interacted with OsPTD1 and that the latter was also required for normal CO formation and plant fertility. Additionally, the expression profiles of both genes were consistent with their functions. Our results suggest that OsSHOC1 and OsPTD1 are essential for rice fertility and CO formation, possibly by stabilizing the recombinant intermediates during meiosis.  相似文献   
207.

The production of transgenic citrus plants from adult tissues is difficult because of low regeneration and transformation rates. To increase the transformation efficiency of adult citrus tissues, an improved protocol involving adult Citrus sinensis Osbeck ‘Tarocco’ blood orange tissues was developed. Explants were pre-incubated in a liquid medium prior to infection by Agrobacterium tumefaciens. Plant materials were also incubated on callus-induction medium supplemented with various combinations of cytokinin (Cyt) and kanamycin (Kan). An appropriate pre-incubation of the explants increased the transformation efficiency of adult tissues. During the callus-induction period, the Cyt type and Kan concentration had the largest and smallest effects on the transformation efficiency, respectively. The most effective combination of plant growth regulator and Kan for the transformation of ‘Tarocco’ blood orange tissues was 2 mg L−1 2-isopentenyl adenine and 50 mg L−1 Kan. The transformation efficiency under the optimized conditions was 11.7%. A Southern blot analysis confirmed the integration of the transgene. These results indicated that the transformation efficiency of adult citrus tissues can be enhanced by optimizing the transformation conditions.

  相似文献   
208.
Zhang  Zhe  Fan  Junxia  Long  Chuannan  He  Bin  Hu  Zhihong  Jiang  Chunmiao  Li  Yongkai  Ma  Long  Wen  Jingshang  Zou  Xiaojin  Chen  Yuan  Ge  Zhenxiang  Zeng  Bin 《Journal of industrial microbiology & biotechnology》2019,46(12):1769-1780
Journal of Industrial Microbiology & Biotechnology - The ZRT, IRT-like protein (ZIP) family exists in many species and plays an important role in many biological processes, but little is known...  相似文献   
209.
The mechanisms underpinning forest biodiversity‐ecosystem function relationships remain unresolved. Yet, in heterogeneous forests, ecosystem function of different strata could be associated with traits or evolutionary relationships differently. Here, we integrate phylogenies and traits to evaluate the effects of elevational diversity on above‐ground biomass across forest strata and spatial scales. Community‐weighted means of height and leaf phosphorous concentration and functional diversity in specific leaf area exhibited positive correlations with tree biomass, suggesting that both positive selection effects and complementarity occur. However, high shrub biomass is associated with greater dissimilarity in seed mass and multidimensional trait space, while species richness or phylogenetic diversity is the most important predictor for herbaceous biomass, indicating that species complementarity is especially important for understory function. The strength of diversity‐biomass relationships increases at larger spatial scales. We conclude that strata‐ and scale‐ dependent assessments of community structure and function are needed to fully understand how biodiversity influences ecosystem function.  相似文献   
210.
In the tropics of South China, climate change induced more rainfall events in the wet season in the last decades. Moreover, there will be more frequently spring drought in the future. However, knowledge on how litter decomposition rate would respond to these seasonal precipitation changes is still limited. In the present study, we conducted a precipitation manipulation experiment in a tropical forest. First, we applied a 60% rainfall exclusion in April and May to defer the onset of wet season and added the same amount of water in October and November to mimic a deferred wet season (DW); second, we increased as much as 25% mean annual precipitation into plots in July and August to simulate a wetter wet season (WW). Five single‐species litters, with their carbon to nitrogen ratio ranged from 27 to 49, and a mixed litter were used to explore how the precipitation change treatments would affect litter decomposition rate. The interaction between precipitation changes and litter species was not significant. The DW treatment marginally accelerated litter decomposition across six litter types. Detailed analysis showed that DW increased litter decomposition rate in the periods of January to March and October to December, when soil moisture was increased by the water addition in the dry season. In contrast, WW did not significantly affect litter decomposition rate, which was consistent with the unchanged soil moisture pattern. In conclusion, the study indicated that regardless of litter types or litter quality, the projected deferred wet season would increase litter decomposition rate, whereas the wetter wet season would not affect litter decomposition rate in the tropical forests. This study improves our knowledge of how tropical forest carbon cycling in response to precipitation change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号