首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15284篇
  免费   1146篇
  国内免费   849篇
  17279篇
  2024年   36篇
  2023年   204篇
  2022年   506篇
  2021年   781篇
  2020年   472篇
  2019年   603篇
  2018年   579篇
  2017年   419篇
  2016年   583篇
  2015年   866篇
  2014年   976篇
  2013年   1093篇
  2012年   1327篇
  2011年   1212篇
  2010年   756篇
  2009年   663篇
  2008年   754篇
  2007年   704篇
  2006年   597篇
  2005年   525篇
  2004年   461篇
  2003年   373篇
  2002年   331篇
  2001年   308篇
  2000年   255篇
  1999年   230篇
  1998年   150篇
  1997年   148篇
  1996年   152篇
  1995年   111篇
  1994年   111篇
  1993年   82篇
  1992年   134篇
  1991年   102篇
  1990年   78篇
  1989年   78篇
  1988年   64篇
  1987年   72篇
  1986年   64篇
  1985年   50篇
  1984年   48篇
  1983年   41篇
  1982年   24篇
  1981年   13篇
  1980年   16篇
  1979年   19篇
  1977年   14篇
  1976年   11篇
  1973年   10篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection. The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9, which sense viral nucleic acids within the endosomal compartments. Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system. The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases. Therefore, pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.  相似文献   
72.
The Pseudomonas syringae type III secretion system (T3SS) is induced during interaction with the plant or culture in minimal medium (MM). How the bacterium senses these environments to activate the T3SS is poorly understood. Here, we report the identification of a novel two-component system (TCS), RhpRS, that regulates the induction of P. syringae T3SS genes. The rhpR and rhpS genes are organized in an operon with rhpR encoding a putative TCS response regulator and rhpS encoding a putative biphasic sensor kinase. Transposon insertion in rhpS severely reduced the induction of P. syringae T3SS genes in the plant as well as in MM and significantly compromised the pathogenicity on host plants and hypersensitive response-inducing activity on nonhost plants. However, deletion of the rhpRS locus allowed the induction of T3SS genes to the same level as in the wild-type strain and the recovery of pathogenicity upon infiltration into plants. Overexpression of RhpR in the deltarhpRS deletion strain abolished the induction of T3SS genes. However, overexpression of RhpR in the wild-type strain or overexpression of RhpR(D70A), a mutant of the predicted phosphorylation site of RhpR, in the deltarhpRS deletion strain only slightly reduced the induction of T3SS genes. Based on these results, we propose that the phosphorylated RhpR represses the induction of T3SS genes and that RhpS reverses phosphorylation of RhpR under the T3SS-inducing conditions. Epistasis analysis indicated that rhpS and rhpR act upstream of hrpR to regulate T3SS genes.  相似文献   
73.
Improving simvastatin bioconversion in Escherichia coli by deletion of bioH   总被引:1,自引:0,他引:1  
Simvastatin is an important cholesterol lowering compound and is currently synthesized from the natural product lovastatin via multistep chemical synthesis. We have previously reported the use of an Escherichia coli strain BL21(DE3)/pAW31 as the host for whole-cell biocatalytic conversion of monacolin J acid to simvastatin acid. During fermentation and bioconversion, unknown E. coli enzyme(s) hydrolyzed the membrane permeable thioester substrate dimethylbutyryl-S-methyl mercaptopropionate (DMB-S-MMP) to the free acid, significantly decreased the efficiencies of the whole-cell bioconversion and the downstream purification steps. Using the Keio K-12 Singe-Gene Knockout collection, we identified BioH as the sole enzyme responsible for the observed substrate hydrolysis. Purification and reconstitution of E. coli BioH activity in vitro confirmed its function. BioH catalyzed the rapid hydrolysis of DMB-S-MMP with kcat and Km values of 260+/-45 s(-1) and 229+/-26 microM, respectively. This is in agreement with previous reports that BioH can function as a carboxylesterase towards fatty acid esters. YT2, which is a delta bioH mutant of BL21(DE3), did not hydrolyze DMB-S-MMP during prolonged fermentation and was used as an alternative host for whole-cell biocatalysis. The rate of simvastatin acid synthesis in YT2 was significantly faster than in BL21(DE3) and 99% conversion of 15 mM simvastatin acid in less than 12 h was achieved. Furthermore, the engineered host required significantly less DMB-S-MMP to be added to accomplish complete conversion. Finally, simvastatin acid synthesized using YT2 can be readily purified from fermentation broth and no additional steps to remove the hydrolyzed dimethylbutyryl-S-mercaptopropionic acid is required. Together, the proteomic and metabolic engineering approaches render the whole-cell biocatalytic process more robust and economically attractive.  相似文献   
74.
Spatial pattern changes in aboveground plant biomass in a grazing pasture   总被引:1,自引:0,他引:1  
Using gamma distribution and spatial autocorrelation, it was demonstrated that plant biomass per unit area of a pasture grazed by cattle exhibited two kinds of spatial heterogeneity: small-scale heterogeneity caused by grazing and large-scale heterogeneity caused by topography, land aspect, etc. For each of the 10 measurement times from May to August, 100 quadrats 50cm × 50cm were arranged along a straight line 50m long in a pasture, and the plants within the quadrats were harvested at the height of 3cm above the ground surface to measure the dry weight. The data were aggregated into frequency distributions, and gamma distribution and the parameter values were estimated. This analysis showed that with the progression of grazing the amount of biomass decreased and the degree of spatial heterogeneity in biomass, measured per 0.25m2, increased, and due to plant regrowth the trends were reversed. By rearranging the 100 biomass data in order of weight, it was suggested that plots with an extremely large biomass were not grazed by cattle and remained in the pasture. For the same data, variations of biomass along the straight line were divided into two parts based on the moving average: the spatial trend and the residuals which cannot be explained by the trend. In this analysis, 48–75% of the total spatial variation was explained by the trend along the straight line. Analysis using spatial autocorrelation for the actual biomass changes showed that the biomass changes within a range of about 10m on the straight line gave a positive correlation, which indicates a topographical trend in biomass. Spatial autocorrelation for residuals suggested that the spatial changes in biomass along the straight line followed a wave-like or checker-board pattern. Small-scale spatial heterogeneity in plant biomass may be caused by the uneven deposition of excreta by grazing animals, uneven use of the grassland by grazing animals, and uneven dispersal of plant seeds through faeces over the grassland. The possibility that such unevenness might accelerate energy flow in the grassland ecosystem and contribute to grassland sustainability is discussed.  相似文献   
75.
76.
肾上腺髓质素受体及其信号转导   总被引:3,自引:0,他引:3  
肾上腺髓质素(Adm)是新近发现的一种生物活性多肽,在体内有着广泛的分布,参与机体多种生理功能的调节。Adm可与两种受体结合:CGRP受体和Adm特异受体。Adm与体结合后,通过cAMP-PKA等信号转导通路发挥舒长血管、降低血压、利尿利钠和抑制细胞增殖等作用。  相似文献   
77.
Caveolin‐1 (Cav1) is down‐regulated during MK4 (MDCK cells harbouring inducible Ha‐RasV12 gene) transformation by Ha‐RasV12. Cav1 overexpression abrogates the Ha‐RasV12‐driven transformation of MK4 cells; however, the targeted down‐regulation of Cav1 is not sufficient to mimic this transformation. Cav1‐silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction‐related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I‐CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha‐RasV12‐inducing MK4 cells increased exosome‐like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I‐CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I‐CM (MK4+I‐EXs). Wnt5a, a downstream product of Ha‐RasV12, was markedly secreted by MK4+I‐CM and MK4+I‐EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha‐RasV12‐ and MK4+I‐CM‐induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down‐regulation, either by Ha‐RasV12 or targeted shRNA, increased frizzled‐2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I‐EXs in MDCK cells. These data suggest that Cav1‐dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha‐RasV12‐Wnt5a‐Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha‐RasV12‐driven cell transformation.  相似文献   
78.
79.
This paper describes our medicinal chemistry efforts on 7-(cyclopentyloxy)-6-methoxy1,2,3,4-tetrahydroisoquinoline scaffold: design, synthesis and biological evaluation using conformational restriction approach and bioisosteric replacement strategy. Biological data revealed that the majority of the synthesized compounds of this series displayed moderate to potent inhibitory activity against PDE4B and strong inhibition of LPS-induced TNFα release. Among them, compound 19 exhibited the strongest inhibition against PDE4B with an IC50 of 0.88?µM and 21 times more potent selectivity toward PDE4B over PDE4D when compared to rolipram. A primary structure-activity relationship study showed that the attachment of CH3O group or CF3O group to the phenyl ring at the para-position was helpful to enhance the inhibitory activity against PDE4B. Moreover, sulfonamide group played a key role in improving the inhibitory activity against PDE4B and subtype selectivity. In addition, the attachment of the additional rigid substituents at the C-3 position of 1,2,3,4-tetrahydroisoquinoline ring was favored to subtype selectivity, which was consistent well with the observed docking simulation.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号